What should the UK do about semiconductors? Part 2: the past and future of the global semiconductor industry

This is the second post in a series of three, considering the background to the forthcoming UK Government Semiconductor Strategy.

In the first part, The UK’s place in the semiconductor world, I discussed the new global environment, in which a tenser geopolitical situation has revived a policy climate around the world which is much more favourable to large scale government interventions in the industry, I sketched the global state of the semiconductor industry and tried to quantify the UK’s position in the semiconductor world.

Here, I discuss the past and future of semiconductors, mentioning some of the important past interventions by governments around the world that have shaped the current situation, and I speculate on where the industry might be going in the future.

Finally, in the third part, I’ll ask where this leaves the UK, and speculate on what its semiconductor strategy might seek to achieve.

Active industrial policy in the history of semiconductors

The history of the global semiconductor industry involves a dance between governments around the world and private companies. In contrast to the conviction of the predominantly libertarian ideology of Silicon Valley, the industry wouldn’t have come into existence and developed in the form we now know without a series of major, and expensive, interventions by governments across the world.

But, to caricature the claims of some on the left, there is an idea that it was governments that created the consumer electronic products we all rely on, and private industry has simply collected the profits. This view doesn’t recognise the massive efforts private industry has made, spending huge sums on the research and development needed to perfect manufacturing processes and bring them to market. Taking the USA alone, in 2022 US the government spent $6 billion on semiconductor R&D, compared to private industry’s $50.2 billion.

The semiconductor industry emerged in the 1960s in the USA, and in its early days more than half of its sales were to the US government. This was an early example of what we would now call “mission driven” innovation, motivated by a “moonshot project”. The “moonshot project” of the 1960s was driven by a very concrete goal – to be able to drop a half-tonne payload anywhere on the earth’s surface, with a precision measured in hundreds of meters.

Semiconductors were vital to achieve this goal – the first mass-produced computers based on integrated circuits were developed as the guidance systems of Minuteman intercontinental ballistic missiles. Of course, despite its military driving force, this “moonshot” produced important spin-offs – the development of space travel to the point at which a series of manned missions to the moon were possible, and increasing civilian applications of the more much cheaper, more powerful and more reliable computers that solid-state electronics made possible.

The USA is where the semiconductor industry started, but it played a central role in three East Asian development miracles. The first to exploit this new technology was Japan. While the USA was exploiting the military possibilities of semiconductors, Japan focused on their application in consumer goods.

By the early 1980’s, though, Japanese companies were producing memory chips more efficiently than the USA, while Nikon took a leading position in the photolithography equipment used to make integrated circuits. In part the Japanese competitive advantage was driven by their companies’ manufacturing prowess and their attentiveness to customer needs, but the US industry complained, not entirely without justification, that their success was built on the theft of intellectual property, access to unfairly cheap capital, the protection of home markets by trade barriers, and government funded research consortia bringing together leading companies. These are recurring ingredients of industrial policy as executed by East Asian developmental states, first executed successfully in Taiwan and in Korea, and now being applied on a continental scale by China.

An increasingly paranoid USA’s response to this threat from Japan to its technological supremacy in semiconductors was to adopt some industrial strategy measures itself. The USA relaxed its stringent anti-trust laws to allow US companies to collaborate in R&D through a consortium called SEMATECH, half funded by the federal government. Sematech was founded in 1987, and in the first 5 years of its operation was supported by $500 m of Federal funding, leading to some new self-confidence for the US semiconductor industry.

Meanwhile both Korea and Taiwan had identified electronics as a key sector through which to pursue their export-focused development strategies. For Taiwan, a crucial institution was the Industrial Technology Research Institute, in Hsinchu. Since its foundation in 1973, ITRI had been instrumental in supporting Taiwan’s industrial base in moving closer to the technology frontier.

In 1985 the US-based semiconductor executive Morris Chang was persuaded to lead ITRI, using this position to create a national semiconductor industry, in the process spinning out the Taiwan Semiconductor Manufacturing Company. TSMC was founded as a pure-play foundry, contract manufacturing integrated circuits designed by others and focusing on optimising manufacturing processes. This approach has been enormously successful, and has led TSMC to its globally leading position.

Over the last decade, China has been aggressively promoting its own semiconductor industry. The 2015 “Made in China 2025” identified semiconductors as a key sector for the development of a high tech manufacturing sector, setting the target of 70% self-sufficiency by 2025, and a dominant position in global markets by 2045.

Cheap capital for developing semiconductor manufacturing was provided through the state-backed National Integrated Circuit Industry Investment Fund, amounting to some $47 bn (though it seems the record of this fund has been marred by corruption allegations). The 2020 directive “Several Policies for Promoting the High-quality Development of the Integrated Circuit Industry and Software Industry in the New Era” reinforced these goals with a package of measures including tax breaks, soft loans, R&D and skills policies.

While the development of the semiconductor industry in Taiwan and Korea was generally welcomed by policy-makers in the West, a changing geopolitical climate has led to much more anxiety about China’s aspirations. The USA has responded by an aggressive programme of bans on the exports of semiconductor manufacturing tools, such as high end lithography equipment, to China, and has persuaded its allies in Japan and the Netherlands to follow suit.

Industrial policy in support of the semiconductor industry hasn’t been restricted to East Asia. In Europe a key element of support has been the development of research institutes bringing together consortia of industries and academia; perhaps the most notable of these is IMEC in Belgium, while the cluster of companies that formed around the electronics company Phillips in Eindhoven now includes the dominant player in equipment for extreme UV lithography, AMSL.

In Ireland, policies in support of inward investment, including both direct and indirect financial inducements, and the development of institutions to support skills innovation, persuaded Intel to base their European operations in Ireland. This has resulted in this small, formerly rural, nation becoming the second largest exporter of integrated circuits in Europe.

In the UK, government support for the semiconductor industry has gone through three stages. In the postwar period, the electronics industry was a central part of the UK’s Cold War “Warfare State”, with government institutions like the Royal Signals and Radar Establishment at Malvern carrying out significant early research in compound semiconductors and optoelectronics.

The second stage saw a more conscious effort to support the industry. In the mid-to-late 1970’s, a realisation of the potential importance of integrated circuits coincided with a more interventionist Labour government. The government, through the National Enterprise Board, took a stake in a start-up making integrated circuits in South Wales, Inmos. The 1979 Conservative government was much less interventionist than its predecessor, but two important interventions were made in the early 1980’s.

The first was the Alvey Programme, a joint government/private sector research programme launched in 1983. This was an ambitious programme of joint industry/government research, worth £350m, covering a number of areas in information and communication technology. The results of this programme were mixed; it played a significant role in the development of mobile telephony, and laid some important foundations for the development of AI and machine learning. In semiconductors, however, the companies it supported, such as GEC and Plessey, were unable to develop a lasting competitive position in semiconductor manufacturing and no longer survive.

The second intervention arose from a public education campaign ran by the BBC; a small Cambridge based microcomputer company, Acorn, won the contract to supply BBC-branded personal computers in support of this programme. The large market created in this way later gave Acorn the headroom to move into the workstation market with reduced instruction set computing architectures, from which was spun-out the microprocessor design house ARM.

In the third stage, the UK government adopted a market fundamentalist position. This involved a withdrawal from government support for applied research and the run-down of government laboratories like RSRE, and a position of studied indifference about the acquisition of UK technology firms by overseas rivals. Major UK electronics companies, such as GEC and Plessey, collapsed following some ill-judged corporate misadventures. Inmos was sold, first to Thorn, then to the Franco- Italian group, SGS Thomson. Inmos left a positive legacy, with many who had worked there going on to participate in a Bristol based cluster of semiconductor design houses. The Inmos manufacturing site survives as Newport Wafer Fab, currently owned by the Dutch-based, Chinese owned company Nexperia, though its future is uncertain following a UK government ruling that Nexperia should divest its shareholding on national security grounds.

This focus on the role of interventions by governments across the world at crucial moments in the development of the industry shouldn’t overshadow the huge investments in R&D made by private companies around the world. A sense of the scale of these investments is given by the figure below.

R&D expenditure in the microelectronics industry, showing Intel’s R&D expenditure, and a broader estimate of world microelectronics R&D including semiconductor companies and equipment manufacturers. Data from the “Are Ideas Getting Harder to Find?” dataset on Chad Jones’s website. Inflation corrected using the US GDP deflator.

The exponential increase in R&D spending up to 2000 was driven by a similarly exponential increase in worldwide semiconductor sales. In this period, there was a remarkable virtuous circle of increasing sales, leading to increasing R&D, leading in turn to very rapid technological developments, driving further sales growth. In the last two decades, however, growth in both sales and in R&D spending has slowed down


Global semiconductor sales in billions of dollars. Plot from “Quantum Computing: Progress and Prospects” (2019), National Academies Press, which uses data from the Semiconductor Industry Association.

Possible futures for the semiconductor industry

The rate of technological progrèss in integrated circuits between 1984 and 2003 was remarkable and unprecedented in the history of technology. This drove an exponential increase in microprocessor computing power, which grew by more than 50% a year. This growth arose from two factors, As is well-known, the number of transistors on a silicon chip grew exponentially, as predicted by Moore’s Law. This was driven by many unsung, but individually remarkable, technological innovations in lithography (to name just a couple of examples, phase shift lithography, and chemically amplified resists), allowing smaller and smaller features to be manufactured.

The second factor is less well known – by a phenomenon known as Dennard scaling, as transistors get smaller they operate faster. Dennard scaling reached its limit around 2004, as the heat generated by microprocessors became a limiting factor. After 2004, microprocessor computer power increased at a slower rate, driven by increasing the number of cores and parallelising operations, resulting in rates of increase around 23% a year. This approach itself ran into diminishing returns after 2011.

Currently we are seeing continued reductions in feature sizes, together with new transistor designs, such as finFETs, which in effect allow more transistors to be fitted into a given area by building them side-on. But further increases in computer power are increasingly being driven by optimising processor architectures for specific tasks, for example graphical processing units and specialised chips for AI, and by simply multiplying the number of microprocessors in the server farms that underlie cloud computing.

Slowing growth in computer power. The growth in processor performance since 1988. Data from figure 1.1 in Computer Architecture: A Quantitative Approach (6th edn) by Hennessy & Patterson.

It’s remarkable that, despite the massive increase in microprocessor performance since the 1970’s, and major innovations in manufacturing technology, the underlying mode of operation of microprocessors remains the same. This is known by the shorthand of CMOS, for Complementary Metal Oxide Semiconductor. Logic gates are constructed from complementary pairs of field effect transistors consisting of a channel in heavily doped silicon, whose conductance is modulated by the application of an electric field across an insulating oxide layer from a metal gate electrode.

CMOS isn’t the only way of making a logic gate, and it’s not obvious that it is the best one. One severe limitation on our computing is its energy consumption. This matters at a micro level; the heat generated by a laptop or mobile phone is very obvious, and it was problems of heat dissipation that underlay the slowdown in the growth in microprocessor power around 2004. It’s also significant at a global level, where the energy used by cloud computing is becoming a significant share of total electricity consumption.

There is a physical lower limit to the energy that computing uses – this is the Landauer limit on the energy cost of a single logical operation, a consequence of the second law of thermodynamics. Our current technology consumes more than three orders of magnitude more energy than is theoretically possible, so there is room for improvement. Somewhere in the universe of technologies that don’t exist, but are physically possible, lies a superior computing technology to CMOS.

Many alternative forms of computing have been tried out in the laboratory. Some involve different materials to silicon: compound semiconductors or new forms of carbon like nanotubes and graphene. In some, the physical embodiment of information is, not electric charge, but spin. The idea of using individual molecules as circuit elements – molecular electronics – has a long and somewhat chequered history. None of these approaches has yet made a significant commercial impact; incumbent technologies are always hard to displace. CMOS and its related technologies amount to a deep nanotechnology implemented at a massive scale; the huge investment in this technology has in effect locked us into a particular technology path.

There are alternative, non-semiconductor based, computing paths that are worth mentioning, because they may become important in the future. One is to copy biology; our own brains deliver enormous computing power at remarkably low energy cost, with an architecture that is very different from the von Neumann architecture that human-built computers follow, and a basic unit that is molecular. Various radical approaches to computing take some inspiration from biology, whether that is the new architectures for CMOS that underlie neuromorphic computing, or entirely molecular approaches based on DNA.

Quantum computing, on the other hand, offers the potential for another exponential leap forward in computing power – in principle. Many practical barriers remain before this potential can be turned into practise, however, and this is a topic for another discussion. Suffice it to say that, on a timescale of a decade or so, quantum computers will not replace conventional computers for anything more than some niche applications, and in any case they are likely to be deployed in tandem with conventional high performance computers, as accelerators for specific tasks, rather than as general purpose computers.

Finally, I should return to the point that semiconductors aren’t just valuable for computing; the field of power electronics is likely to become more and more important as we move to a net zero energy system. We will need a much more distributed and flexible energy grid to accommodate decentralised renewable sources of electricity, and this needs solid-state power electronics capable of handling very high voltages and currents – think of replacing house-size substations by suitcase-size solid-state transformer. Widespread uptake of electric vehicles and the need for widely available rapid charging infrastructures will place further demands on power electronics. Silicon is not suitable for these applications, which require wide-band gap semiconductors such as diamond, silicon carbide and other compound semiconductors.

Sources

Chip War: The Fight for the World’s Most Critical Technology, by Chris Miller, is a great overview of the history of this technology.

Semiconductors in the UK: Searching for a strategy. Geoffrey Owen, Policy Exchange, 2022. Very good on the history of the UK industry.

To Every Thing There is a Season – lessons from the Alvey Programme for Creating an Innovation Ecosystem for Artificial Intelligence, by Luke Georghiou. Reflections on the Alvey Programme by one of the researchers who carried out its official evaluation.

Are Ideas getting hard to find, Bloom, Jones, van Reenan and Webb. American Economic Review (2020). An influential paper on diminishing rates of return on R&D, taking the semiconductor industry as a case study.

Quantum Computing: Progress and Prospects (2019), National Academies Press.

Up next: What should the UK do about semiconductors? Part 3: towards a UK semiconductor strategy

What should the UK do about semiconductors? Part 1: the UK’s place in the semiconductor world

The UK government is currently in the process of writing a new strategy for semiconductors. This is the first of a series of three blogposts setting out the context for this strategy.

In this first part, I discuss the new global environment, in which a tenser geopolitical situation has revived a policy climate around the world which is much more favourable to large scale government interventions in the industry. I’ll sketch the global state of the semiconductor industry and try to quantify the UK’s position in the semiconductor world.

In the second part, I’ll discuss the past and future of semiconductors, mentioning some of the important past interventions by governments around the world that have shaped the current situation, and I’ll speculate on where the industry might be going in the future.

Finally, in the third part, I’ll ask where this leaves the UK, and speculate on what its semiconductor strategy might seek to achieve.

As recent events have shown, the semiconductor industry is one of the most strategically important industries in the world, so it’s going to be very important for the UK government to get its strategy right. But there are more general principles at stake. We’re at a moment when a worldwide consensus behind the ideas of free trade and laissez-faire economics is being rapidly replaced in the major economies of the world by much more interventionist, and assertively nationalist, industrial policies. This isn’t comfortable territory for the British state, so how it responds to this test case will be very telling.

War, Semiconductors and the CHIPS act

It’s been reported that Russia has been dismantling washing machines to extract their integrated circuits, for use in missiles. True or not, this story illustrates two important features of the modern world. Integrated circuits – silicon chips – are now ubiquitous and indispensable for modern living – they’re not just to be found in computers and mobile phones; they’re in automobiles, consumer durables, even toys. And modern precision-guided weapon systems depend on them, so with a European war entering its second year, their strategic importance couldn’t be more obvious.

If demand for integrated circuits and other semiconductors is ubiquitous, we’ve also been reminded that their supply isn’t secure. The pandemic led to severe supply chain disruptions, in turn leading to major losses of production in the global automobile industry. The manufacture of the most technically advanced integrated circuits is concentrated in a single company – TSMC – located in the contested territory of Taiwan. This dependence means that, if the People’s Republic of China invades Taiwan, the consequences to the world economy would be disastrous.

This is the context for the USA’s CHIPS and Science Act – a hugely significant, and expensive, government intervention to rebuild the USA’s manufacturing capacity in the most advanced semiconductors. Underlying this is a serious attempt to restore its own technological supremacy – and specifically, to maintain its technological superiority over China.

This is the return, at scale, of industrial strategy. The primary driving force, as it was in the 1950’s and 60’s, is geopolitics, but the economic and political dimensions are important too, with an emphasis on restoring manufacturing – and the good jobs it provides – to communities that have suffered from deindustrialisation. The Act provides for expenditures, over five years, of $39 billion on incentives to return more semiconductor manufacturing to the USA, $13.2 billion for additional research and development, and $10 billion to create regional innovation hubs in economically lagging parts of the country.

It’s worth stressing what an ideological about-turn this represents. An economic advisor to the first President Bush reputedly said “Potato chips, computer chips, what’s the difference? A hundred dollars of one or a hundred dollars of the other is still a hundred dollars”. This is a marvellously succinct expression of the neoliberal argument against sector-based industrial strategy. It’s now clear how naive this view was. Crisps weren’t about to see the most rapid period of technological progress in history, propelling those countries like Taiwan and Korea that took advantage of this opportunity, from middle income economies, into the ranks of rich countries at the technological frontier. And Frito-Lay doesn’t make missiles.

The European Union has responded with its own European Chips Act. This includes an €11 billion “Chips for Europe Initiative”, together with further coordination of R&D and education and skills initiatives. Most significantly, it proposes a relaxation of state aid rules, allowing member states to directly subsidise new manufacturing facilities in Europe.

How should the UK respond to this new environment? The government is preparing a Semiconductor Strategy, but this has been repeatedly delayed.

The global semiconductor industry

What are the products of the global semiconductor industry? The most high profile are enormously complex integrated circuits that power our personal computers, gaming stations and mobile phones, as well as driving the giant server farms that underly cloud computing. The most important component of modern electronics is the transistor, a solid state switch. A few transistors can be combined to make a logic gate – the basic unit of a computer; the way this is done is described as “complementary metal oxide silicon” – hence CMOS. An integrated circuit combines a number of transistors on a single piece of silicon – a chip. Different designs of integrated circuits produce central processing units (CPUs), graphical processing units (GPUs), and solid state memory.

The more transistors the chip has, the more computing power or the bigger the memory, so the history of microelectronics is a story of miniaturisation, with each generation of chips having more transistors on a single integrated circuit, as expressed by Moore’s law. A modern CPU (such as Apple’s M1, made by TSMC) has 16 billion transistors, each of which has dimensions measured in nanometers. These are made by the most sophisticated and precise manufacturing processes in the world, through the successive deposition of layers of different materials, at each stage etching the layers with patterns that define the components.

Only three companies in the world have the capability to operate at this technological frontier: the USA’s Intel, Korea’s Samsung, and Taiwan’s TSMC. In recent years, progress at Intel has stumbled, and TSMC has taken a commanding lead for the manufacturing the highest performance integrated circuits. TSMC focuses purely on manufacturing, making integrated circuits to the designs of so-called fabless companies, such as Nvidia. Intel, on the other hand, designs its own chips and manufactures them.

The scale of capital investment required to make these advanced circuits is breathtaking. TSMC is reported to have invested $60 billion in its facilities to manufacture chips at the 3 nm and 5 nm nodes. TSMC has been incentivised by the US government to establish production in Arizona, at a cost of $40 bn. These huge capital sums reflect the high cost of the ultra-sophisticated, high precision equipment required to pattern these circuits on the nanoscale. The frontier processes rely on the extreme-UV lithography systems made by the Dutch company ASML, a single unit of which may cost $150 million. Other important centres of equipment production include Japan and the USA.

There is still substantial demand for less advanced integrated circuits, for applications in cars, consumer durables, industrial machinery, weapons systems and much else. In addition to the three industry leaders, companies like Global Foundries, STMicro and NXP operate manufacturing plants in the USA, Europe and Singapore. China’s leading semiconductor company, Semiconductor Manufacturing International Corporation, falls into this category, though it has aspirations to reach the technological frontier, and is supported in this goal by China’s government.

Not all semiconductors are silicon. Other materials – compound semiconductors, such as Gallium Arsenide, and Gallium Nitride – are particularly important for optoelectronics; the business of converting electricity to light and back again. These are the materials from which solid state lasers and light emitting diodes are made ; familiar in everyday life as scanners in supermarkets and low energy light bulbs, but no less importantly the technologies which make the internet possible, converting electronic signals into the optical pulses that transmit information at huge rates through optical fibres.

The primary driving force for innovation in semiconductors has been information and communication technology – the desire for more powerful computers and the higher rates of data transmission that make possible today’s internet. But information processing isn’t the only important use of semiconductors. In power electronics, the focus is on the switching, amplifying and transformation of the much higher currents needed to drive electric motors. These technologies are rapidly growing in importance; the transition to a net zero greenhouse gas energy economy is going to be driven by the replacement of internal combustion engines by electric motors. The growth of electrical vehicles, the growing importance of renewable energy and the need for energy storage, all will drive the need to efficiently handle and transform high power electricity using light and efficient solid state devices.

The UK’s place in the semiconductor world

The UK is not a big player in the global semiconductor industry. Its exports of integrated circuits, worth $1.63 bn, represent 0.24% of the world’s trade; insignificant compared to the world’s leaders, Taiwan, China and Korea, whose exports are worth $138 bn, $120 bn, and $89.1 bn respectively. Outside the Far East, the USA exports $44.2 bn; it’s this relatively weak position relative to the East Asian countries that has prompted the measures of the CHIPS Act. In Europe, the leading exporters are Germany and Ireland, at $12.8 bn, and $11.2 bn respectively.

As mentioned above, the manufacture of integrated circuits is hugely capital intensive, so it’s important to look at the suppliers of the equipment used to make chips. The export trade here is dominated by Japan, the Netherlands and the USA, worth $12 bn, $11.7 bn, and $10.7 bn respectively. The UK has 1.06% of the world market, with exports worth $497m.

One other important component of the supply chain for chip manufacture are the chemicals and materials needed. These include the silicon single crystals from which the wafers are made, amongst the purest substances ever made by man, a wide range of industrial gases and solvents and reagents, all supplied at very high purity grades, and highly optimised speciality chemicals – e.g. the materials that make up the photoresists. This sector is dominated by Japan, with exports worth $4.23 bn worth, representing 29.5% of the world trade. Here the UK exports $212 m, a 1.48% share of the world market.

It’s worth reflecting on these figures in the context of the UK’s overall trade position. The total value of its exports in 2020 were $700 bn, made up of $371 bn in products, and $329 bn in services, so these three semiconductor-related sectors amount to about 6.3% of its total product exports. But as these figures emphasise, service sector exports are particularly important for the UK, and this bigger story is mirrored in the semiconductor sector.

The most significant semiconductor company in the UK doesn’t make any semiconductors – ARM designs chips, deriving its income from royalties and licensing fees for its intellectual property. Its revenues of $2.7 bn in 2021 would have made a significant contribution to the UK’s service exports (2020 UK service exports included $21.3 bn in royalties and license fees). Smaller companies, such as Imagination and Graphcore, are similarly focused on design rather than manufacturing.

In recent years, the question of ownership of ARM has achieved prominence. Originally a public company listed on the London Stock Exchange, ARM was acquired by the Japanese finance house SoftBank in 2016. A proposed sale to the US firm Nvidia collapsed last year after concerns from regulators in the UK, the USA and the EU that the acquisition would seriously reduce competion. SoftBank still remains keen to sell the company, so the future ownership and control of ARM remains in question.

Sources

All trade figures 2020 numbers, from the Observatory of Economic Complexity.

Up next: What should the UK do about semiconductors? Part 2: the past and future of the global semiconductor industry

“Science Superpower: the UK’s Global Science Strategy beyond Horizon Europe”

Last Wednesday the Science Minister, George Freeman MP, gave a wide ranging speech with this title, on the current state of UK science policy at the think-tank Onward. A video of the speech can be watched on YouTube here. As a response to the speech, there was a panel discussion the following day, featuring Prof Sir John Bell, Lord David Willetts, James Phillips, Tabitha Goldstaub, Priya Guha and and myself, chaired by Onward’s Adam Hawksbee. This is also available to watch on YouTube. This, more or less, is what I said in my opening statement.

Hello. I’m Richard Jones, talking to you from Oldham Town Hall – which I think is very on-brand for Onward, and indeed for myself…

I want to start where the Minister finished – what are we talking about, when we talk about being a “Science Superpower”? This is part of that broader question of how the UK finds its place in the world.

The UK represents a little less than 3% of the world’s high tech economy. It’s not the USA, it’s not China. But the UK does have a real potential competitive advantage in the strength of its science base – it is genuinely outperforming, at least (and this qualification is important) when it is judged on purely academic metrics.

The challenge – and this is the “Innovation Nation” aspect that the Minister stresses – is applying that science strength to the critical issues the UK – and the world – faces. These challenges include:

  • The UK’s more than a decade long stagnation in productivity growth;
  • The wrenching economic transition we face to achieve a net zero energy economy;
  • Ensuring good health outcomes for our citizens;
  • National security in an increasingly dangerous world.

To begin with productivity, it can’t be stressed too much how the stagnation of productivity growth after 2008 underlies pretty much all the difficulties the country faces – stagnant wages, the persistent fiscal deficit, the difficulties we’re seeing in funding public services to the standard people expect

As the Minister said, to get economic growth back we need to be accelerating progress in high tech sectors

But there’s a paradox here – the economist Diane Coyle, from the Productivity Institute, has analysed the productivity slowdown, and finds the biggest contributors to the slowdown are precisely those high-tech sectors that we think should be our strength. [Source: Coyle & Mei, Diagnosing the UK Productivity Slowdown: Which Sectors Matter and Why?]

In Pharmaceuticals, productivity growth was 0.6% a year on average between 1998 and 2008. But between 2009-2019 pharma industry productivity actually fell, by 0.2% a year on average.

So, we need to do things differently.

Money is important, and the government’s spending uplift is real, significant in scale, and to be welcomed.

I welcome ARIA as a chance to try and experiment with different funding mechanisms.

But from the perspective of Oldham, the biggest and most welcome change the minister talked about was the new focus on place and clusters across the UK

The UK is two nations – a high performing Northern European economy in the Greater Southeast. And beyond, in the North, The Midlands, Wales – we have places with economies comparable to southern Italy or Portugal. Our big cities – like Birmingham, Greater Manchester and Glasgow – have productivity below the UK average. This isn’t normal – in most developed countries, its the big cities that drive the national economy. Why can’t Manchester be more like Munich, a similar size city, that’s one of Germany’s innovation hubs? If it was, it would generate about £40 billion a year more value for the UK.

This is a huge waste of potential. We need to identify nascent clusters, and work with those places to build up their innovation capacity, build industrial R&D, attract in investment from outside, and give people in places like Oldham the opportunity that the Minister talks about to take part in this high tech economy.

But money isn’t everything. For example, we do health research to support the health of our citizens as well as to create economic value. The Oxford vaccine was a brilliant example of this.

But even pre-pandemic, a man born in Oldham 2016-2018 could expect to live in good health for 58 years. For a man in Oxfordshire, healthy life expectancy was 68.3 years! [Source: Health state life expectancy at birth and at age 65 years by local areas, UK, ONS.]

Ten lost years for Oldhamites! The human cost of those years of ill-health and premature death is huge. But so is the economic cost – this ill-health is a major contributor to the productivity gap in Oldham and places like it, all across the UK

That’s something R&D should do something about – this truly would be “innovation for the nation”.

We have to do things differently. We need to apply our science to address the big strategic problems the UK faces, and we need that to be an effort that the whole nation takes part in – and benefits from.

None of this should take away from the power of great research centres like Cambridge and Oxford – that really is a supercluster, a massive asset for the nation.

The question is, how can we build on that and spread the benefits across the rest of the country? There are plenty of great spin-outs from Cambridge and Oxford. We need them to scale-up in the UK, and not feel they have to move to Germany, or California, to succeed. So why shouldn’t their first factory be in Rochdale or Rotherham, or Dudley or Stoke-on-Trent?

So yes, let’s aspire to be an innovation nation, but to build that, we need innovation cities and innovation regions all across the UK.

For (much) more on this, see my Productivity Institute paper Science and innovation policy for hard times: an overview of the UK’s Research and Development landscape.

2022 Books roundup

2022 was a thoroughly depressing year; here are some of the books I’ve read that have helped me (I hope) to put last year’s world events in some kind of context.

Helen Thompson could not have been luckier – or, perhaps, more farsighted – in the timing of her book’s release. Disorder: hard times in the 21st century is a survey of the continuing influence of fossil fuel energy on geopolitics, so couldn’t be more timely, given the impact of Russia’s invasion of Ukraine on natural gas and oil supplies to Western Europe and beyond. The importance of securing national energy supplies runs through history of the world in the 20th century in both peace and war; we continue to see examples of the deeply grubby political entanglements the need for oil has drawn Western powers into. All this, by the way, provides a strong secondary argument, beyond climate change, for accelerating the transition to low carbon energy sources.

The presence of large reserves of oil in a country isn’t an unmixed blessing – we’re growing more familiar with the idea of a “resource curse”, blighting both the politics and long term economic prospects of countries whose economies depend on exploiting natural resources. Alexander Etkind’s book Natures Evil: a cultural history of natural resources is a deep history of how the materials we rely on shape political economies. It has a Eurasian perspective that is very timely, but less familiar to me, and takes the idea of a resource curse much further back in time, covering furs and peat as well as the more familiar story of oil.

With more attention starting to focus on the world’s other potential geopolitical flashpoint – the Taiwan Straits – Chris Miller’s Chip War: the fight for the world’s most critical technology – is a great explanation of why Taiwan, through the semiconductor company TSMC, came to be so central to the world’s economy. This book – which has rightly won glowing reviews – is a history of the ubiquitous chip – the silicon integrated circuits that make up the memory and microprocessor chips at the heart of computers, mobile phones – and, increasingly, all kinds of other durable goods, including cars. The focus of the book is on business history, but it doesn’t shy away from the crucial technical details – the manufacturing processes and the tools that enable them, notably the development of extreme UV lithography and the rise of the Dutch company ASML. Excellent though the book is, its business focus did make me reflect that (as far as I’m aware) there’s a huge gap in the market for a popular science book explaining how these remarkable technologies all work – and perhaps speculating on what might come next.

Slouching to Utopia: an economic history of the 20th century, by Brad DeLong, is an elegy for a period of unparalleled technological advance and economic growth that seems, in the last decade, to have come to an end. For DeLong, it was the development of the industrial R&D laboratory towards the end of the 19th century that launched a long century, from 1870-2010, of unparalleled growth in material prosperity. The focus is on political economy, rather than the material and technological basis of growth (for the latter, Vaclav Smil’s pair of books Creating the Twentieth Century and Transforming the Twentieth Century are essential). But there is a welcome focus on the material substrate of information and communication technology rather than the more visible world of software (in contrast, for example, to Robert Gordon’s book The Rise and Fall of American Growth, which I reviewed rather critically here).

Though I am very sympathetic to many of the arguments in the book, ultimately it left me somewhat disappointed. Having rightly stressed the importance of industrial R&D as the driver of the technological change, this theme was not really strongly developed, with little discussion of the changing institutional landscape of innovation around the world. I also wish the book had a more rigorous editor – the prose lapses on occasion into self-indulgence and the book would have been better had it been a third shorter.

In contrast, Vaclav Smil’s latest book – How the World Really Works: A Scientist’s Guide to Our Past, Present and Future – clearly had an excellent editor. It’s a very compelling summary of a couple of decades of Smil’s prolific output. It’s not a boast about my own learning to say that I knew pretty much everything in this book before I read it; simply a consequence of having read so many of Smil’s previous, more academic books. The core of Smil’s argument is to stress, through quantification, how much we depend on fossil fuels, for energy, for food (through the Haber-Bosch process), and for the basic materials that underlie our world – ammonia, plastics, concrete and steel. These chapters are great, forceful, data-heavy and succinct, though the chapter on risk is less convincing.

Despite the editor, Smil’s own voice comes through strongly, sceptical, occasionally curmudgeonly, laying out the facts, but prone to occasional outbreaks of scathing judgement (he really dislikes SUVs!). Perhaps he overdoes the pessimism about the speed with which new technology can be introduced, but his message about the scale and the wrenching impact of the transition we need to go through, to move away from our fossil fuel economy, is a vital one.

Science and innovation policy for hard times: an overview of the UK’s Research and Development landscape

A revised and tidied up version of my blogpost series, An Index of Issues in UK Science and Innovation Policy, has now been published as a Productivity Insights Paper under the auspices of The Productivity Institute. My thanks to Bart van Ark for encouraging me to do this, and to Krystyna Rudzki for editing the draft.

Download the PDF here: Science and innovation policy for hard times: an overview of the UK’s Research and Development landscape

Science and innovation policy for hard times

This is the concluding section of my 8-part survey of the issues facing the UK’s science and innovation system, An Index of Issues in UK Science and Innovation Policy.

The earlier sections were:
1. The Strategic Context
2. Some Overarching Questions
3. The Institutional Landscape
4. Science priorities: who decides?
5. UK Research and Innovation
6. UK Government Departmental Research
7. Horizon Europe (and what might replace it) and ARIA

8.1. A “science superpower”? Understanding the UK’s place in the world.

The idea that the UK is a “science superpower” has been a feature of government rhetoric for some time, most recently repeated in the Autumn Statement speech. What might this mean?

If we measure superpower status by the share of world resources devoted to R&D (both public and private) by single countries, there are only two science superpowers today – the USA and China, with a 30% and 24% share of science spending (OECD MSTI figures for 2019 adjusted for purchasing power parity, including all OECD countries plus China, Taiwan, Russia, Singapore, Argentina and Romania). If we take the EU as a single entity, that might add a third, with a 16% share (2019 figure, but excluding UK). The UK’s share is 2.5% – thus a respectable medium size science power, less than Japan (8.2%) and Korea (4.8%), between France (3.1%) and Canada (1.4%).

It’s often argued, though, that the UK achieves better results from a given amount of science investment than other countries. The primary outputs of academic science are scientific papers, and we can make an estimate of a paper’s significance by asking how often it is cited by other papers. So another measure of the UK’s scientific impact – the most flattering to the UK, it turns out – is to ask what fraction of the world’s most highly cited papers originate from the UK.

By this measure, the two leading scientific superpowers are, once again, the USA and China, with 32% and 24% shares respectively; on this measure the EU collectively, at 29%, does better than China. The UK scores well by this measure, at 13.4%, doing substantially better than higher spending countries like Japan (3.1%) and Korea (2.7%).

A strong science enterprise – however measured – doesn’t necessarily by itself translate into wider kinds of national and state power. Before taking the “science superpower” rhetoric serious we need to ask how these measures of scientific activity and scientific activity translate into other measures of power, hard or soft.

Even though measuring the success of our academic enterprise by its impact on other academics may seem somewhat self-referential, it does have some consequences in supporting the global reputation of the UK’s universities. This attracts overseas students, in turn bringing three benefits: a direct and material economic contribution to the balance of payments, worth £17.6 bn in 2019, a substantial subsidy to the research enterprise itself, and, for those students who stay, a source of talented immigrants who subsequently contribute positively to the economy.

The transnational nature of science is also significant here; having a strong national scientific enterprise provides a connection to this wider international network and strengthens the nation’s ability to benefit from insight and discoveries made elsewhere.

But how effective is the UK at converting its science prowess into hard economic power? One measure of this is the share of world economic value added in knowledge and technology intensive businesses. According to the USA’s NSF, the UK’s share of value added in this set of high productivity manufacturing and services industries that rely on science and technology is 2.6%. We can compare this with the USA (25%), China (25%), and the EU (18%). Other comparator countries include Japan (7.9%), Korea (3.7%) and Canada (1.2%).

Does it make sense to call the UK a science superpower? Both on the input measure of the fraction of the world’s science resources devoted to science, and on the size of the industry base this science underpins, the UK is an order of magnitude smaller than the world leaders. In the historian David Edgerton’s very apt formulation, the UK is a large Canada, not a small USA.

Where the UK does outperform is in the academic impact of its scientific output. This does confer some non-negligible soft power benefits of itself. The question to ask now is whether more can be done to deploy this advantage to address the big challenges the nation now faces.

8.2. The UK can’t do everything

The UK’s current problems are multidimensional and its resources are constrained. With less than 3% of the world’s research and development resources, no matter how effectively these resources are deployed, the UK will have to be selective in the strategic choices it makes about research priorities.

In some areas, the UK may have some special advantages, either because the problems/opportunities are specific to the UK, or because history has given the UK a comparative advantage in a particular area. One example of the former might be the development of technologies for exploiting deep-water floating offshore wind power. In the latter category, I believe the UK does retain an absolute advantage in researching nuclear fusion power.

In other areas, the UK will do best by being part of larger transnational research efforts. At the applied end, these can be in effect led by multinational companies with a significant presence in the UK. Formal inter-governmental collaborations are effective in areas of “big science” – which combine fundamental science goals with large scale technology development. For example, in high energy physics the UK has an important presence in CERN, and in radio astronomy the Square Kilometer Array is based in the UK. Horizon Europe offered the opportunity to take part in trans-European public/private collaborations on a number of different scales, and if the UK isn’t able to associate with Horizon Europe other ways of developing international collaborations will have to be built.

But there will remain areas of technology where the UK has lost so much capability that the prospect of catching up with the world frontier is probably unrealistic. Perhaps the hardware side of CMOS silicon technology is in this category (though significant capability in design remains).

8.3. Some pitfalls of strategic and “mission driven” R&D in the UK

One recently influential approach to defining research priorities links them to large-scale “missions”, connected to significant areas of societal need – for example, adapting to climate change, or ensuring food security. This has been a significant new element in the design of the current EU Horizon Programme (see EU Missions in Horizon Europe).

For this approach to succeed, there needs to be a match between the science policy “missions” and a wider, long term, national strategy. In my view, there also needs to be a connection to the specific and concrete engineering outcomes that are needed to make an impact on wider society.

In the UK, there have been some moves in this direction. The research councils in 2011 collectively defined six major cross-council themes (Digital Economy; Energy; Global Food Security; Global Uncertainties; Lifelong Health and Wellbeing; Living with Environmental Change), and steered research resources into (mostly interdisciplinary) projects in these areas. More recently, UKRI’s Industrial Strategy Challenge Fund was funded from a “National Productivity Investment Fund” introduced in the 2016 Autumn Statement and explicitly linked to the Industrial Strategy.

These previous initiatives illustrate three pitfalls of strategic or “mission driven” R&D policy.

  • The areas of focus may be explicitly attached to a national strategy, but that strategy proves to be too short-lived, and the research programmes it inspires outlive the strategy itself. The Industrial Strategy Challenge Fund was linked to the 2017 Industrial Strategy, but this strategy was scrapped in 2021, despite the fact that the government was still controlled by the same political party.
  • Research priorities may be connected to a lasting national priority, but the areas of focus within that priority are not sufficiently specified. This leads to a research effort that risks being too diffuse, lacking a commitment to a few specific technologies and not sufficiently connected to implementation at scale. In my view, this has probably been the case in too much research in support of low-carbon energy.
  • In the absence of a well-articulated strategy from central government, agencies such as Research Councils and Innovate UK guess what they think the national strategy ought to be, and create programmes in support of that guess. This then risks lacking legitimacy, longevity, and wider join-up across government.

In summary, mission driven science and innovation policy needs to be informed by carefully thought through national strategy that commands wide support, is applied across government, and is sustained over the long-term.

8.4. Getting serious about national strategy

The UK won’t be able to use the strengths of its R&D system to solve its problems unless there is a settled, long-term view about what it wants to achieve. What kind of country does the UK want to be in 2050? How does it see its place in the world? In short, it needs a strategy.

A national strategy needs to cut across a number of areas. There needs to be an industrial strategy, about how the country makes a living in the world, how it ensures the prosperity of its citizens and generates the funds needed to pay for its public services. An energy strategy is needed to navigate the wrenching economic transition that the 2050 Net Zero target implies. As our health and social care system buckles under the short-term aftermath of the pandemic, and faces the long-term challenge of an ageing population, a health and well-being strategy will be needed to define the technological and organisational innovation needed to yield an affordable and humane health and social care system. And, after the lull that followed the end of the cold war, a strategy to ensure national security in an increasingly threatening world must return to prominence.

These strategies need to reflect the real challenges that the UK faces, as outlined in the first part of this series. The goals of industrial strategy must be to restore productivity growth and to address the UK’s regional economic imbalances. Innovation and skills must be a central part of this, and given the condition large parts of the UK find themselves in, there need to be conscious efforts to rebuild innovation and manufacturing capacity in economically lagging regions. There needs to be a focus on increasing the volume of high value exports (both goods and services) that are competitive on world markets. The goal here should be to start to close the balance of payments gap, but in addition international competitive pressure will also bring productivity improvements.

An energy strategy needs to address both the supply and demand side to achieve a net zero system by 2050, and to guarantee security of supply. It needs to take a whole systems view at the outset, and to be discriminating in deciding which aspects of the necessary technologies can be developed in the UK, and which will be sourced externally. Again, the key will be specificity. For example, it is not enough to simply promote hydrogen as a solution to the net zero problem – it’s a question of specifying how it is made, what it is used for, and identifying which technological problems are the ones that the UK is in a good position to focus on and benefit from, whether that might be electrolysis, manufacture of synthetic aviation fuel, or whatever.

A health and well-being strategy needs to clarify the existing conceptual confusion about whether the purpose of a “Life Sciences Strategy” is to create high value products for export, or to improve the delivery of health and social care services to the citizens of the UK. Both are important, and in a well-thought through strategy each can support the other. But they are distinct purposes, and success in one does not necessarily translate to success in the other.

Finally, a security strategy should build on the welcome recognition of the 2021 Integrated Review that UK national security needs to be underpinned by science and technology. The traditional focus of security strategy is on hard power, and this year’s international events remind us that this remains important. But we have also learnt that the resilience of the material base of economy can’t be taken for granted. We need a better understanding of the vulnerabilities of the supply chains for critical goods (including food and essential commodities).

The structure of government leads to a tendency for strategies in each of these areas to be developed independently of each other. But it’s important to understand the way these strategies interact with each other. We won’t have any industry if we don’t have reliable and affordable low carbon energy sources. Places can’t improve their economic performance if large fractions of their citizens can’t take part in the labour market due to long-term ill-health. Strategic investments in the defence industry can have much wider economic spillover benefits.

For this reason it is not enough for individual strategies to be left to individual government departments. Nor is our highly centralised, London-based government in a position to understand the specific needs and opportunities to be found in different parts of the country – there needs to be more involvement of devolved nation and city-region governments. The strategy needs to be truly national.

8.5. Being prepared for the unexpected

Not all science should be driven by a mission-driven strategy. It is important to maintain the health of the basic disciplines, because this provides resilience in the face of unwelcome surprises. In 2019, we didn’t realise how important it would be to have some epidemiologists to turn to. Continuing support for the core disciplines of physical, biological and medical science, engineering, social science and the humanities should remain a core mission of the research councils, the strength of our universities is something we should preserve and be proud of, and their role in training the researchers of the future will remain central.

Science and innovation policy also needs to be able to create the conditions that produce welcome surprises, and then exploit them. We do need to be able to experiment in funding mechanisms and in institutional forms. We need to support creative and driven individuals, and to recognise the new opportunities that new discoveries anywhere in the world might offer. We do need to be flexible in finding ways to translate new discoveries into implemented engineering solutions, into systems that work in the world. This spirit of experimentation could be at the heart of the new agency ARIA, while the rest of the system should be flexible enough to adapt and scale up any new ways of working that emerge from these experiments.

8.7 Building a national strategy that endures

A national strategy of the kind I called for above isn’t something that can be designed by the research community; it needs a much wider range of perspectives if, as is necessary, it’s going to be supported by a wide consensus across the political system and wider society. But innovation will play a key role in overcoming our difficulties, so there needs to be some structure to make sure insights from the R&D system are central to the formulation and execution of this strategy.

The new National Science and Technology Council, supported by the Office for Science and Technology Strategy, could play an important role here. Its position at the heart of government could give it the necessary weight to coordinate activities across all government departments. It would be a positive step if there was a cross-party commitment to keep this body at the heart of government; it was unfortunate that with the Prime Ministerial changes over the summer and autumn the body was downgraded and subsequently restored. To work effectively its relationships with the Government Office for Science, the Council for Science and Technology need to be clarified.

UKRI should be able to act as an important two-way conduit between the research and development community and the National Science and Technology Council. It should be a powerful mechanism for conveying the latest insights and results from science and technology to inform the development of national strategy. In turn, its own priorities for the research it supports should be driven by that national strategy. To fulfil this function, UKRI will be have to develop the strategic coherence that the Grant Review has found to be currently lacking.

The 2017 Industrial Strategy introduced the Industrial Strategy Council as an advisory body; this was abruptly wound up in 2021. There is a proposal to reconstitute the Industrial Strategy Council as a statutory body, with a similar status, official but independent of government, to the Office of Budgetary Responsibility or the Climate Change Committee. This would be a positive way of subjecting policy to a degree of independent scrutiny, holding the government of the day to account, and ensuring some of the continuity that has been lacking in recent years.

8.8 A science and innovation system for hard times

Internationally, the last few years have seen a jolting series of shocks to the optimism that had set in after the end of the cold war. We’ve had a worldwide pandemic, there’s an ongoing war in Europe involving a nuclear armed state, we’ve seen demonstrations of the fragility of global supply chains, while the effects of climate change are becoming ever more obvious.

The economic statistics show decreasing rates of productivity growth in all developed countries; there’s a sense of the worldwide innovation system beginning to stall. And yet one can’t fail to be excited by rapid progress in many areas of technology; in artificial intelligence, in the rapid development and deployment of mRNA vaccines, in the promise of new quantum technologies, to give just a few examples. The promise of new technology remains, yet the connection to the economic growth and rising living standards that we came to take for granted in the post-war period seems to be broken.

The UK demonstrates this contrast acutely. Despite some real strengths in its R&D system, its economic performance has fallen well behind key comparator nations. Shortcomings in its infrastructure and its healthcare system are all too obvious, while its energy security looks more precarious than for many years. There are profound disparities in regional economic performance, which hold back the whole country.

If there was ever a time when we could think of science as being an ornament to a prosperous society, those times have passed. Instead, we need to think of science and technology as the means by which our society becomes more prosperous and secure – and adapt our science and technology system so it is best able to achieve that goal.

From self-stratifying films to levelling up: A random walk through polymer physics and science policy

After more than two and a half years at the University of Manchester, last week I finally got round to giving an in-person inaugural lecture, which is now available to watch on Youtube. The abstract follows:

How could you make a paint-on solar cell? How could you propel a nanobot? Should the public worry about the world being consumed by “grey goo”, as portrayed by the most futuristic visions of nanotechnology? Is the highly unbalanced regional economy of the UK connected to the very uneven distribution of government R&D funding?

In this lecture I will attempt to draw together some themes both from my career as an experimental polymer physicist, and from my attempts to influence national science and innovation policy. From polymer physics, I’ll discuss the way phase separation in thin polymer films is affected by the presence of surfaces and interfaces, and how in some circumstances this can result in films that “self-stratify” – spontaneously separating into two layers, a favourable morphology for an organic solar cell. I’ll recall the public controversies around nanotechnology in the 2000s. There were some interesting scientific misconceptions underlying these debates, and addressing these suggested some new scientific directions, such as the discovery of new mechanisms for self-propelling nano- and micro- scale particles in fluids. Finally, I will cover some issues around the economics of innovation and the UK’s current problems of stagnant productivity and regional inequality, reflecting on my experience as a scientist attempting to influence national political debates.

Is the UK economy more R&D intensive than we’ve thought?

1. On the discrepancy between ONS and HMRC estimates of business R&D.

In the UK, there are two ways in which the total amount of business R&D (BERD) is measured. The Office for National Statistics conducts an annual survey of business, in which a sample of firms is asked to report how much R&D has been carried out. Meanwhile firms can report what R&D they have carried out to the taxman – HMRC – in order to claim R&D tax credits, which according to circumstances can be a reduction of their liability for corporation tax, or an actual cash payment. In recent years, the two measures of business R&D have increasingly diverged, with substantially more R&D expenditure being claimed for tax credits than is reported in the BERD survey.

The divergence between HM Revenue and Customs (HMRC) and Business enterprise research and development (BERD) estimates of research and development (R&D) expenditure. Source: ONS.

The ONS has been looking into this divergence, and has recently published a note which concludes that the primary reason for the discrepancy is an undersampling of the small business population. On this basis, it has adjusted its previous estimate for business R&D substantially upwards – in 2020, the revision is from £26.9 bn to £43 bn. In future years, ONS will introduce improved, more robust, methodologies that will include a wider range of SMEs in the sample they survey.

In principle, there could be two possible causes for the growing divergence between the total business R&D recorded by the ONS BERD survey and the amounts underlying claims to HMRC for R&D tax credits:

a. The incentives of R&D tax credits have caused businesses to stretch the definition of R&D so they can get money for activities that are part of normal business (e.g. market research, working out how to use new equipment). This is exacerbated by the growth of an industry of consultants offering their services to firms to help them claim this money (in return for a %).

b. The ONS survey of firms (the BERD survey) has systematically undersampled a population of small and medium enterprises (SMEs), which turn out to have more R&D activity than previously believed.

In favour of (a) – the discrepancy between the two measures hasn’t been entirely static, as you’d expect if it was simply a question of missing a population of firms who had always been doing R&D at a constant rate, but who have only just been discovered. The gap has risen from £7.3 bn in 2014, to £16.6 bn in 2018. So for this explanation to hold, we need to believe not only that there is an existing population of SMEs carrying out R&D that has previously been undetected, but that this population has been substantially growing. Is R&D growth in the SME sector at a rate of £2.3 bn a year plausible? I’m not sure.

Moreover, the incentives for stretching the definition of R&D to claim free money are obvious. HMRC accept that some claims are outright fraudulent, estimating that 4.9% of the cost of the scheme is attributable to error and fraud. But there’s a big grey area between outright fraud and creative interpretation of the “Frascati” definitions of R&D.

ONS argues in favour of (b), backing this up with a detailed comparison of the microdata from the ONS survey and HMRCs returns. To add some anecdotal support, work in Greater Manchester in collaboration with a data science consultancy does seem to have identified a population of innovative SMEs in GM which has previously remained invisible, in the sense that they are firms who don’t engage with universities or with Innovate UK.

In truth, the real answer is probably some mixture of the two. We’ll learn more once the new methodology has produced a complete data set identifying the sectors and geographical locations of R&D performing firms.

2. Policy implications

Figures for total R&D spending (including both business and public sector R&D) as a proportion of GDP provide a useful measure of the overall research intensity of the UK economy and form the basis for international comparisons. The previous figure for R&D intensity – about 1.7% – put the UK between the Czech Republic and Italy. The new estimates suggest a revised figure of 2.4%, which would put the UK roughly on a par with Belgium, slightly above France, but behind the USA and Germany, and still a long way behind leaders like Korea and Israel. Of course, when making these international comparisons, a natural question is how accurate are the R&D statistics in these other countries. This is a good question that could be investigated by OECD, who collate international R&D statistics.

The international comparison has driven a target for R&D intensity that the government committed to – that it would achieve an R&D intensity equal to the OECD average. At the time when the target was formulated this average was indeed equal to 2.4%. However, the OECD average is a moving target since other countries are increasing their own R&D – it’s now above 2.5%. One can also ask whether a target to achieve international mediocrity is stretching enough.

There are more fundamental issues with the idea of having an R&D intensity target at all. One quirk of expressing the target as a % of GDP is that one can achieve it by driving down the denominator; certainly GDP growth in the UK has been disappointing for the last 12 years, as the Prime Minister has reminded us. One could argue that a numerical target for R&D is arbitrary and one should concentrate more on the instrumental outcomes one wants to achieve from the research – higher growth, more rapid and cost effective progress towards net zero, better population health outcomes etc. As I wrote myself recently in my survey of the UK R&D landscape:

“An R&D target should be thought of not as an end in itself, but as a means to an end. We should start by asking what kind of economy do we need, if we are to meet the big strategic goals that I discussed in the first part of this series. Given a clearer view about that, we’ll have a better understanding the necessary fraction of national resources that we should devote to research and development. I don’t know if that would produce the exact figure of 2.4%, but I wouldn’t be surprised if it was significantly higher.”

Perhaps the most problematic implication of a BERD upgrade is the enduring puzzle that productivity growth remains very slow. This extra, previously unrecorded R&D, doesn’t seem to have translated into productivity growth as we would expect.

This raises the broader question of why we think the government should support business R&D at all, whether through R&D tax credits or through other means. The classical argument is that private sector R&D leads to wider benefits from the economy that aren’t captured by the firms that make the investments, so in the absence of government firms will invest less in R&D that would be socially optimal. This leads to the question of whether all kinds of R&D, in all kinds of company (e.g. large and small) lead to equal degrees of wider spillover effects (and the same question can be asked of intangible investments more generally). If the kinds of R&D that are now being revealed with the new methodology do have smaller spillovers than other types, one might ask what kind of interventions could improve those.

3. Political implications

As others have observed, the chief danger of the revision is that in times of fiscal retrenchment, the government could declare “mission accomplished” and delay or cancel increases in public R&D. This danger seems very real given the direction of the current government. The opposition, on the other hand, has called for an R&D target of 3% of GDP, so there is plenty of room there.

There is an argument that the revision suggests that public R&D is even more effective than we thought in generating private sector R&D – the leverage effect is stronger than we thought. For this argument to be convincing, we’d need to understand the degree to which the companies doing this R&D are connected to the wider innovation system. But it doesn’t then support the wider argument for R&D as a driver of productivity growth – we have the R&D intensity we aspired to, so why aren’t we seeing the benefits in the productivity figures?

There are possible arguments that our focus in business R&D has been too much on the big incumbents – the GSKs and Rolls Royces – whose R&D is very visible. On the other hand, this connects to the long-running question of why we don’t have more of those big incumbents? At this point, we should recall that there are only two UK companies in the world top-100 of R&D performers – AstraZeneca and GSK. So why aren’t some of these previously unseen R&D intensive companies scaling up to become the new big players?

There is much yet to understand here.

An index of issues in UK science and innovation policy – part 7: Horizon Europe (and what might replace it) and ARIA

In the first part of this series attempting to sum up the issues facing UK science and innovation policy, I tried to set the context by laying out the wider challenges the UK government faces, asking what problems we need our science and innovation system to contribute to solving.

In the second part of the series, I posed some of the big questions about how the UK’s science and innovation system works, considering how R&D intensive the UK economy should be, the balance between basic and applied research, and the geographical distribution of R&D.

In the third part, I discussed the institutional landscape of R&D in the UK, looking at where R&D gets done in the UK.

In the fourth part, looking at the funding system, I considered who pays for R&D, and how decisions are made about what R&D to do.

In the fifth part, I looked in more detail at UK Research and Innovation, the government’s main agency for funding academic science.

In the sixth part, I looked at the other routes that the UK government funds R&D, particularly through government departments.

In this, the final section of my survey of the routes by which the UK government funds R&D, I turn to two areas with the most uncertainty. The first of these is the future of the UK’s participation in the EU Horizon programme. I’ll discuss the distinctive roles of EU funding, and what might replace it in the increasingly likely scenario that the UK is not able to associate. The second is the new agency the Advanced Research and Invention Agency, set up by Act of Parliament in early 2022, and currently just establishing itself; here I’ll suggest some early thoughts about the role this might play in the overall system.

7.1. Horizon Europe – past participation and future prospects of association

In the past, the UK government has funded R&D indirectly through the EU Horizon programme, which provided research grants to UK researchers in HE and to UK businesses, often as part of larger collaborative programmes with researchers and businesses from elsewhere in Europe. EU research funding to UK universities and businesses has been on a very material scale; of course ultimately this money came from the UK’s contributions to the overall budget. In the UK’s national accounts, this was accounted for by a notional cost that reached a high point of £1.46 billion in 2019.

Because EU research money was allocated competitively, there wasn’t a direct relationship between the money the UK put into the budget and the research money the UK received. In fact, because of the UK’s relative research strength, the UK got back significantly more money than it put in. According to an analysis of the 2007-2013 cycle, the UK’s indicative contribution to the budget was €5.4 bn, but it received €8.8 bn of funding for research, development and innovation.

After the UK decided to leave the EU, a consensus developed that the UK should seek to stay associated with the EU’s R&D programmes, an option already taken up by other non-member states such as Switzerland, Norway and Israel. The Trade and Cooperation Agreement between the EU and the UK contained a draft protocol establishing the UK’s association with Horizon Europe (with the exception of the European Innovation Council). “The Parties affirm that the draft protocols set out below have been agreed in principle and will be submitted to the Specialised Committee on Participation in Union Programmes for discussion and adoption. The United Kingdom and European Union reserve their right to reconsider participation in the programmes, activities and services listed in Protocols [I and II] before they are adopted since the legal instruments governing the Union programmes and activities may be subject to change. The draft protocols may also need to be amended to ensure their compliance with these instruments as adopted.”

If the UK does associate, it will need to contribute financially to the Horizon Europe programme. In contrast to the situation when the UK was a member state, when it received more back from EU R&D programmes than it notionally contributed, as an associated country it would need to cover not only the full cost of R&D activities funded in the UK through Horizon UK, but also a substantial additional overhead. The money for this was set aside in the 2021 Comprehensive Spending Review; it amounted to £1.3 bn in 21/22, rising to £2.1bn 24/25.

As I write, the draft protocol has not yet been finalised by the EU side, and given the wider political situation, it seems increasingly unlikely that it will be finalised any time soon. The UK government made a commitment at the time of the 2021 CSR that, in the event of the UK not associating, the money set aside would be retained in the science budget, redeployed in a set of programmes that reproduced the benefits of EU association – the so-called “Plan B”.

On July 20th, the government released more details of “Plan B”, restating the commitment to use the Horizon money for alternative science programmes. “In the event we are unable to associate, we will use the funding allocated to Horizon Europe at the 2021 Spending Review to build on our existing R&D programmes with flagship new domestic and international research and innovation investments to support top talent, drive end-to-end innovation and foster international collaboration with EU and global partners.”

7.2. The Three Pillars of Horizon Europe

The EU’s R&D programmes are agreed for seven year cycles; the current cycle – Horizon Europe – assigns €95.5 billion for the period from 2021-27. The overall goals of the programme are specified in terms of the strategic goals of the European Union – tackling climate change, meeting the UN’s Sustainable Development Goals, and boosting the EU’s competitiveness and economic growth.

To support these broad goals, Horizon Europe supports three “Pillars”. The first of these is “Excellent Science”. This includes the European Research Council, together with schemes supporting early career researchers and collaborative research and training for PhD students. The European Research Council supports investigator led basic science and humanities research; this has a very high reputation in the scientific community, for reasons I’ll discuss below. However, it is important to remember that it is a relatively small part of the overall Horizon programme – it’s been allocated €16 bn in the current cycle.

The second pillar is for “Global Challenges and European Industrial Competitiveness”, which supports research collaborations built around sectors, challenges and missions. These typically involve both academic and industrial researchers in multinational collaborations.

The third pillar is new to the current cycle – “Innovative Europe” is focused on developing more high tech start-up companies, with a new “European Innovation Council”, a “European Institute of Innovation and Technology”, and support for regional innovation ecosystems. In the event of association, the UK will opt out of the “EIC accelerator” – that part of pillar 3 which provides investment funding to companies.

Underpinning the whole programme is an aspiration to create a “European Research Area”, with free and easy movement of people and research groups across the continent, lubricated by exchange schemes for scientists (particularly at early career stages) and cross-border transferability of grants. In the past the UK has benefitted from this, with a scientific and institutional infrastructure that has made the country an attractive destination for scientists from other European countries.

7.3. Why scientists love the European Research Council

Amongst elite scientists in the UK, the main driving force for an enthusiasm for the UK to associate with Horizon Europe is to be able to continue to participate in the European Research Council. This, in part, simply reflects how successful the UK has been in winning competitive funding through this route. For example, in the competition for the most established researchers – the Advanced Grants, which provide €2.5 million over 5 years for a single investigator and their team – UK based researchers won 22% of all grants between 2008 and 2020, compared to 16% and 12% to the two next most successful nations, Germany and France respectively (source).

But beyond the self-interest of UK scientists, why is the European Research Council so highly thought of? It has a clarity of purpose, with a single-minded focus on investigator driven basic research, with no predetermined priorities, but with an emphasis on supporting high risk/high gain proposals. It is correctly perceived as highly competitive, attracting proposals from the most outstanding researchers across Europe – currently its grantees have won nine Nobel prizes. Its decisions are made by a peer review process which is widely considered to be fair, rigorous and well executed.

Peer review isn’t easy to do well. In section 2 of this series, in discussing a possible world-wide slow-down in scientific productivity, I mentioned the suggestion that peer review can lead to conservatism and can suppress radical new ideas. In section 5, I suggested that there was a lack of confidence in the scientific community in the credibility of the peer review systems that the UK Research Councils run. In the light of these concerns, it’s worth asking what the European Research Council gets right about peer review (while recognising that even the ERC’s process is probably not perfect, for example in tricky areas like handling highly interdisciplinary proposals).

In my opinion, there’s nothing magic about the ERC’s approach to peer review. The process involves committees of experts (and, to declare a personal interest, I recently served on the expert panel for Advanced Grants in my own field of Condensed Matter Physics). Those panels invite written comments on proposals from worldwide specialists they choose for their appropriateness to judge individual proposals. In a final meeting, the panels consider the referees’ reports, with interviews with the proposers to give them the chance to respond to criticisms, and come to a collective judgement about which proposals to give highest priority for funding.

What makes this work? The starting point must be high quality panels, with a good range of expertise, the ability to take a broad view, and an effective chair. At its best, the ERC has developed a virtuous circle, in which the high quality of the proposals means that outstanding scientists are prepared to put the time in to serve on panels, while in turn it is the credibility of the process that attracts applications from the best scientists from across a whole continent. It is the researchers on the panels who select the remote referees, using their knowledge of the field to select the most appropriate ones, and then applying their own critical scientific judgement to resolve any discrepancies and differences of opinion between referees. Sufficient time is set aside for in-depth decisions – a single proposal round will involve two panel meetings, each of which can take up to a week.

Meanwhile administrative support is provided by high quality subject specialists working full-time for ERC as programme managers. In the UK, the research councils were forced to make serious cuts on their office staff in the early 2010s, because it was mistakenly believed that these subject specialists represented an administrative overhead, rather than being a precondition for the most effective allocation of R&D funding. This mistake should not be repeated (and, indeed, should be corrected).

7.4. “Plan B” for non-association

The “Plan B” document published this July (Supporting UK R&D and collaborative research beyond European programmes) usefully sets out some principles for how the money set aside for association with Horizon Europe will be used in the event that association doesn’t materialise. But details of implementation remain sketchy, and delivery may prove challenging to the existing agencies and bodies that will be charged with executing these schemes.

These agencies are mostly in UKRI, with a particularly important role for Innovate UK, with the National Academies potentially playing a role in the “talent” schemes. These are largely fellowships at various career stages, that will be in part fill some of the role of the European Research Council, though without the benefits of the institutional strength that ERC has developed, as outlined in the last section.

The emphasis of measures taken so far has been on stabilising the system, in particular keeping in the UK outstanding scientists who have been awarded ERC grants, but who can’t take them up without moving to an EU member state. The commitment has been made to guarantee the funding of any Horizon UK grant awarded to UK based researchers for the lifetime of the grant. It is going to be important to ensure that this happens without bureaucratic hurdles, in perception or reality, as HE institutions in the EU will be making energetic efforts to recruit these researchers.

The last point emphasises the importance of making sure the UK remains an attractive destination for overseas scientists, and promoting researcher mobility to make sure that the UK is centrally integrated in international networks of expertise. The plan here remains vague, but states the intention to fund “bottom-up collaborations with researchers in partner countries around the globe; multilateral and bilateral collaborations; and Third Country Participation in Horizon Europe”.

Measures for supporting business R&D will be funnelled through Innovate UK; it seems these will largely build on existing schemes. The aim is to support both domestic and international collaborations. The international dimension will be particularly important in supporting high technology SMEs to participate in trans-national supply chains and innovation systems, many of which, of course, involve EU member states.

The local and regional dimension of support for innovation systems is also important. EU funding – including structural funding as well as direct R&D funding – has been important in developing clusters in economically lagging parts of the UK, such as Northern England, Wales and Northern Ireland. The Shared Prosperity Fund is likely to offer only a partial substitute for EU structural funds, so it is encouraging to see a commitment to drive “the development of emerging clusters throughout the UK”, and the statement that the “Plan B” portfolio “will support our mission of levelling up the UK and build on our commitment to increase domestic R&D investment outside of the Greater Southeast by at least a third over the spending review period and at least 40% by 2030.

Moving forward with the association of the UK with Horizon Europe would seem to require a breakthrough in wider EU/UK relations that currently doesn’t seem very likely. In the absence of such a breakthrough, the priority needs to be for the new administration to confirm the funding of plan B, and move very quickly to turn what are currently rather high level plans into deliverable programmes.

7.5 The Advanced Research and Invention Agency (ARIA)

The most recent addition to the UK’s R&D funding landscape is the new funding agency, the Advanced Research and Invention Agency. This was established by an Act of Parliament, finalised in early 2022. It was a personal priority of the Prime Minister’s former chief advisor, Dominic Cummings, who emphasised the need to have a funding agency with the freedom to take big risks, modelled loosely on the US agency ARPA. ARPA was set up in the late 1950’s to ensure technological supremacy for the US armed forces, and research it supported has underpinned world-changing technological innovations such as the internet, the satellite location system that GPS evolved from, and stealth aircraft.

The Act of Parliament establishing ARIA does indeed give a huge amount of latitude in defining its goals and modes of operation; much is left to the discretion of the CEO and the board. The major lever the government retains is the level of funding allocated; the initial commitment is to spend £800m by 24/25. This is a relatively small amount seen in the context of the £20 billion total R&D budget planned for 24/25. Nonetheless, given that we’re already halfway through 22/23, that leaves only two years to get some entirely new programmes off the ground.

The Act does give the Secretary of State powers of Intervention on grounds of national security, and it is easy to imagine that these could be used quite widely. Nonetheless, there is some irony in the way the independence from government that was taken away from the Research Councils has been given to this new agency.

Given that the appointments of the Chief Executive and Chair have only relatively recently been announced, there is not yet clarity about what the new agency will do. I outlined my own views about how such an agency should operate in a piece from January 2020, UK ARPA: an experiment in science policy.

As I wrote then, “If we want to support visionary research, whose applications may be 10-20 years away, we should be prepared to be innovative – even experimental – in the way we fund research. And just as we need to be prepared for research not to work out as planned, we should be prepared to take some risks in the way we support it, especially if the result is less bureaucracy. There are some lessons to take from the long (and, it needs to be stressed, not always successful) history of ARPA/DARPA. To start with its operating philosophy, an agency inspired by ARPA should be built around the vision of the programme managers. But the operating philosophy needs to be underpinned by as enduring mission and clarity about who the primary beneficiaries of the research should be. And finally, there needs to be a deep understanding of how the agency fits into a wider innovation landscape.”

My starting point would be to recognise that pluralism & diversity in funding agencies is a good in itself, and we need to innovate in the way we support innovation. ARPA at its best represented an approach to funding where the focus was on the programme manager – or better, programme leader as the creative force. These leaders should be tasked with assembling and orchestrating teams of talented people to achieve ambitious programmes with concrete goals.

The archetype of the visionary leader is perhaps J.C.R. Licklider, who accepted a position with ARPA in 1962, because if offered an opportunity to realise his vision of computer networking. The research he funded at ARPA laid many of the foundations of modern computing, including the principles of networking that led to the internet, and the principles of human/computer interaction that were further developed a the XEROX PARC laboratory to give us the graphical interfaces that we all take for granted together.

ARPA benefited from a complete clarity of mission – its role was to ensure that the US armed forces enjoyed technological supremacy over any potential rival. That makes clear who its beneficiaries should be – the US Armed Forces.

What should ARIA’s mission be, and who are its beneficiaries? This remains to be decided, but from my perspective it is important to make clear that its primary beneficiaries should neither be the academic community, nor industry. Both communities will be crucial in delivering the mission, but it should not be primarily for their benefit. Instead, I believe that ARIA should focus on one, or a subset of one, of the important strategic goals that the UK state currently faces, as I outlined in the first part of this series.

For me, the most obvious candidate is the challenge of driving down the cost of achieving net zero greenhouse gas emissions to a point where the global transition can be driven by economics, rather than politics.

Up next…

In the next and final part of this series, I will attempt to sum up, with some key priorities for the UK R&D system.

Edited 20 Sept to make clear that the proposed opt-out from Pillar 3 of Horizon Europe only covers the European Innovation Council Fund. My thanks to Martin Smith for pointing this out.

An index of issues in UK science and innovation policy – part 6: UK Government Departmental Research

In the first part of this series attempting to sum up the issues facing UK science and innovation policy, I tried to set the context by laying out the wider challenges the UK government faces, asking what problems we need our science and innovation system to contribute to solving.

In the second part of the series, I posed some of the big questions about how the UK’s science and innovation system works, considering how R&D intensive the UK economy should be, the balance between basic and applied research, and the geographical distribution of R&D.

In the third part, I discussed the institutional landscape of R&D in the UK, looking at where R&D gets done in the UK.

In the fourth part, looking at the funding system, I considered who pays for R&D, and how decisions are made about what R&D to do.

In the fifth part, I looked in more detail at UK Research and Innovation, the government’s main agency for funding academic science.

There’s a tendency for analyses of the UK public R&D system to focus on the research councils that make up UKRI, because they are the most visible. But the UK government funds R&D in a number of other ways – for example through government departments – and it’s these other funding routes that I turn to in this section.

6.1. Other departmental science

Despite the systematic shift of UK government supported R&D from government applied research to “curiosity driven” research in HE between 1980 to 2010 that I described in part 2 of this series, a a substantial amount of government R&D is still routed through government departments, in support of those departments’ priorities.

Departmental science has always been vulnerable to budget cuts. The effects of cutting a research budget will only show up at some unspecified time in the future, so the temptation will always be for a department to sacrifice science in favour of immediate operating expenses. The 2010-2015 policy of austerity produced some dramatic falls in already small departmental research budgets. For the environment, the DEFRA R&D budget fell by 58% in real terms between 2010 and 2015, to £82 m/year, and since then has fallen further to £58m/yr. Transport R&D saw a 22% real terms cut, Education 53%, and the Home Office 60%, over the duration of the Coalition Government. It’s difficult to argue that all necessary innovation in these areas has already been done.

However, the biggest departmental spenders remain Defence, Health, and Business, Energy and Industrial Strategy (outside the latter’s formal responsibility for the UKRI budget). These departments hold key responsibilities for the big challenges I outlined at the start of the series – productivity, energy/net zero, security and health, so it’s worth focusing on them in more detail.

6.2 The Ministry of Defence

The Ministry of Defence has a 20/21 R&D budget of £1.1 bn, and this is expected to rise substantially as the overall Defence budget itself increases. In Defence R&D, there’s a distinction between more long-ranged science and technology, and the expense of development and deployment of systems that are closer to application.

The 2020 Ministry of Defence science and technology strategy committed to spending 1.2% of the overall defence budget on science and technology, under the control of the MoD Chief Scientific Advisor. The total defence budget is projected to increase from £41.2 bn in 20/21 to £47.7bn in 24/25, so this implies a 15% increase in the science and technology budget, to £570m. One should also mention rising sums of money for R&D in the security services – with an allocation of £695m over 3 years.

As I wrote in an earlier blogpost Science and innovation policy in a new age of insecurity, it’s inevitable that in a more threatening world, we’ll see a return to higher direct spending directly on R&D for defense in its broadest sense. So the question now should be, are these increases enough, and are they directed in the right areas?

I don’t know the answer to this. A recent article in Nature highlighted some interesting comparisons. According to this,
the USA spent about $80 bn in 2020 on defence R&D, a factor of 60-fold larger than the UK. The USA’s economy is about 8 times larger than the UK, but this remains a massive gap.

A country that the UK would more commonly compare itself, both in the overall size of its economy and the importance it attaches to defence, is France. France spent €5.6 bn on defence R&D in 2020, more than four times the UK figure, despite roughly comparable overall expenditures on defence.

Definitions of the boundary between R&D and deployment make comparisons difficult, but it’s tempting to interpret this as a consequence of France’s traditionally more Gaullist approach to defence, preferring to develop its own systems rather than relying on allies. In an increasingly uncertain world, it’s going to be important to get this balance right.

6.3. Department of Health and Social Care

As defence R&D was run down, the relative beneficiary was research for health and life sciences. One big institutional manifestation of this shift was the foundation in 2006 of the National Institute of Health Research, to bring together R&D funded directly through the Department of Health in association with NHS England. This remains distinct from the Medical Research Council, which is now incorporated in UK Research and Innovation; NIHR’s focus on England means that the devolved nations have their own budgets. For health research. NIHR is now a major component of the public R&D system – in 19/20 it spent £1.1 bn on research, infrastructure and research training, accounting for about 90% of DHSC’s research spend.

The mission of NIHR is “to improve the health and wealth of the nation through research.” This statement neatly encapsulates the twin goals of the UK’s overall Life Sciences strategy, to improve the delivery of health and social care to the nation’s citizens, on the one hand, and to support the pharma, biotech and medical technology sectors on the other. As I’ve discussed elsewhere, these goals are often not sufficiently differentiated, meaning that the potential tensions between them are not resolved. In my view, NIHR’s close relationship with the National Health Service should mean that NIHR’s focus should remain on improving the health outcomes of the UK’s citizens, with the support of any commercial opportunities that flow from this a secondary goal.

Health R&D was a big beneficiary of the 2021 Spending Review, and if NIHR’s budget rises in line with the overall DHSC R&D budget, this should bring a £730m uplift in NIHR funding compared to flat cash.

One issue that could be addressed in the context of this overall funding uplift is the geographical concentration of NIHR research, which historically has been even more focused on the Golden Triangle (and, within that, on London in particular) than research council funding. In 2018, around 52% of NIHR funding went to London and the Southeast, with 35% of that in London, whose share of England’s population is 16% (Source: UK Health Research Analysis).

NIHR has a vision of a population ‘actively involved in research to improve health and wellbeing for themselves, their families and their communities’. It’s obviously impossible to deliver this vision with such great geographical concentration, particularly given the mismatch between the parts of the country with the worst health outcomes and the geographical location of much of NIHR’s research.

It’s good, therefore, to see in NIHR’s latest strategy document Best Research for Best Health: The Next Chapter, recognition that ‘people in regions and communities where the burden of need is greatest are often under-served by research’, and a commitment to ‘Bringing clinical and applied research to under-served regions and communities with major health needs’.

To achieve this will require the development of research capacity outside the Golden Triangle. It’s good, therefore, to see a commitment to ‘nurture new NHS and non-NHS research sites located in regions that have high health and social care needs and have historically been less active in research, introducing new initiatives to enhance their capacity and capabilities.’

It’s important that NIHR follows through on these welcome commitments; the UK’s health inequalities are, in my view, unacceptable in principle, but also a serious drag on the productivity of those regions where health outcomes are worst. The strengthening of existing and emerging clusters of life sciences and health technology industries outside the Greater Southeast will be an additional benefit.

6.4. Business, Energy and Industrial Strategy (excluding UKRI)

BEIS has the largest R&D budget of all departments, but this is because it is the official department sponsor for UK Research and Innovation, which I discussed in part 5 of this series. Nonetheless, it does have a significant R&D budget of its own, outside UKRI. In 2020, this amounted to just over £1 billion.

In part, this is used to support some important remaining components of state R&D infrastructure. The National Physical Laboratory is responsible for the standards and metrology that underpin commerce and industry, for example maintaining the national system for measuring and defining time accurately. The Met Office produces increasingly accurate weather forecasts, relying on the processing of massive amounts of data and high performance computing, and is increasingly concerned with modelling the effects of climate change. The UK Atomic Energy Authority, much shrunk in scale since the 1980s, is now exclusively concerned with research to develop nuclear fusion as a source of electricity. UKAEA is one of the few remaining parts of civil government that retains the capacity to undertake large scale, complex engineering projects at the frontiers of technology.

As its name suggests, BEIS is responsible for applied R&D in support of industrial strategy. Following the 2017 White Paper, the government established “sector deals” in support of specific sectors, often involving R&D programmes jointly funded by government and industry. The Aerospace sector deal is possibly the most mature, with the Aerospace Technology Institute established as the vehicle for that joint research programme. The future of the “sector deal” approach seems to be in doubt now; the 2017 Industrial Strategy was superseded in 2021 by a new, HM Treasury driven, Plan for Growth, which turned away from so-called “vertical” strategy focused on specific sectors. (discussed in my blogpost “What next for Industrial Strategy”).

BEIS took over responsibility for energy and climate change in 2016, when the formerly free standing Department of Energy and Climate Change was amalgamated with the department. Thus it inherited the DECC R&D budget, which at that time stood at £47 m. Given the scale of the challenge of moving to net zero, and the need for innovation to make what will be a wrenching economic transition affordable, this seems a small level of funding.

It’s worth stressing just how low the UK government’s spending on energy research fell in the 1990s. The low point, of just £30m, was in 2001. The scale of the collapse in state spending is made clear in my plot, which shows total government spending Research, development and demonstration as a fraction of GDP. The reasons for this fall are explored in an earlier post of mine, We sold out our energy future. In short, I suspect it arose from a combination of the complacency that arose from having discovered a large supply of oil and gas, and an ideological conviction that energy supply could and should be entirely left to the market.

UK government spending on energy research, development and demonstration as a faction of GDP. Data: International Energy Agency.

These totals include the UK Atomic Energy Authority’s spending on fusion research, together with more upstream research funded by the research councils (mainly EPSRC). It’s good that they are increasing again; the government now has a Net Zero Research and Innovation Framework
and a Net Zero Innovation Portfolio supporting the UK Government’s “Ten point plan for a green industrial revolution” (see my earlier blogpost for a more detailed analysis of this)

We’ll see how this plan develops.

Up next…

In the next (and, I hope, penultimate) part of this series, I’ll look at the EU Horizon programme (and what might replace it), and the new agency ARIA.

In the past, the UK government has funded R&D indirectly through the EU Horizon programme. Following Brexit, this is in question, despite the UK government’s stated desire to associate with Horizon in the future. I’ll discuss the distinctive roles of EU funding, and what might replace it in the increasingly likely scenario that the UK is not able to associate. Finally, I’ll mention the new agency ARIA (the Advanced Research and Innovation Agency), with some early thoughts about the role this might play in the overall system.