A brief update

My frequency of posting has gone down in the last couple of weeks due to a combination of excessive busy-ness and a not wholly successful attempt to catch up with stuff before going on holiday. Here’s a brief overview of some of the things I would have written about if I’d had more time.

The Nanotechnology Engagement Group (which I chair) met last week to sketch out some of the directions of its second policy report, informed in part by an excellent workshop – Terms of Engagement – held in London a few weeks ago. The workshop brought together policy-makers, practitioners of public engagement, members of the public who had been involved in public engagement events about nanotechnology, and scientists, to explore the different expectations and aspirations these different actors have, and the tensions that arise when these expectations aren’t compatible.

The UK government’s funding body for the physical sciences, EPSRC, held a town meeting to discuss its new draft nanotechnology strategy last week. About 50 of the UKs leading nanoscientists attended; To summarise the mood of the meeting, people were pleased that EPSRC was drawing up a strategy, but they thought that the tentative plan was not nearly ambitious enough. EPSRC and its Strategic Working Group on Nanotechnology (of which I am a member) will be revising the draft strategy in line with these comments and the result should be presented to EPSRC Council for approval in October.

The last two issues of Nature have much to interest the nanotechnologist. Nanotubes unwrapped introduces the idea of using exfoliated graphite as a reinforcing material in composites; this should produce many of the advantages that people hope for in nanotube composites (but which have not yet so far fully materialised) at much lower cost. Spintronics at the atomic level describes a very elegant experiment in which a single manganese atom is introduced as a substitutional dopant on a gallium arsenide surface using a scanning tunnelling microscope, to probe its magnetic interactions with the surroundings. This week’s issue also includes a very interesting set of review articles about microfluidics, including pieces by George Whitesides and Harold Craighead, to which there is free access.

Rob Freitas has put together a website for his Nanofactory collaboration. Having complained on this blog before that my own critique of MNT proposals has been ignored by MNT proponents, it’s only fair for me to recognise that this site has a section about technical challenges which explicitly acknowledges such critiques with these positive words:
“This list, which is almost certainly incomplete, parallels and incorporates the written concerns expressed in thoughtful commentaries by Philip Moriarty in 2005 and Richard Jones in 2006. We welcome these critiques and would encourage additional constructive commentary – and suggestions for additional technical challenges that we may have overlooked – along similar lines by others.”

Finally, in a not totally unrelated development, the UKs funding council, EPSRC, will be running an Ideas Factory on the subject of Matter compilation via molecular manufacturing: reconstructing the wheel. The way this program works is that participants spend a week generating new ideas and collaborations, and at the end of it £1.45 million funding is guaranteed for the best proposals. I’ve been asked to act as the director of this activity, which should take place early in the New Year.

A cross-section of science at the Royal Society

I’ve been attending the New Fellows seminar at the Royal Society, the UK’s national academy of science. This is the occasion for the 44 new fellows that are elected each year (one of whom, this year, was me) to give a brief talk about their research. The resulting seminar is a fascinating snapshot of the whole breadth of current science and technology, of a kind that one rarely sees in today’s world of science specialization. Here are some impressions of the first day.

Biology is strongly represented, with a cluster of talks on various aspects of cell signaling, ranging from the details by which signaling molecules are switched on and off, to the ways stem cells are regulated. A revealing talk showed how electron microscopy could unravel the mechanism by which the remarkable machines that ensure proteins fold correctly – chaperonins – work. From environmental and earth science we had talks on the effects on our environment both of the forces of nature – in the shape of the relationship between long term climate change and variations in the sun’s activity – and of the effects of man, through the impact of our industrial society on atmospheric chemistry. In physics, there was a spread from the most pure aspects of the subject (how to measure the spin of a black hole) to the applied and commercially important (the molecular beam epitaxy technique that underlies much of current semiconductor nanotechnology). One thing that comes out very strongly from the talks are the unexpected unifying threads that run through what appear on the face of it to be very different pieces of science. Ideas from statistical mechanics, like entropy, are obviously important for understanding self-assembly in soft matter, but they also cropped up in talks about signal processing in the brain and in modelling the growth of cities.

The important relationship between science and society was highlighted in two contrasting talks about the application of science to solve problems in the developing world. In one, the talk was at an abstract level, highlighting the problems of governance and economics in Africa that made it difficult to apply existing science to solve pressing problems. These abstract ideas were made very concrete in a fascinating talk about the development of new combination therapies to overcome the problems caused by drug-resistance in malaria. The foundation of these therapies is a new anti-malarial, artemesinin, recently discovered by Chinese scientists on the basis of a remedy from traditional chinese herbal medicine. Now that effective remedies are available, the problems to overcome are the social, economic and political barriers that prevent them from being universally available.

A round-up of nano-blogs

To mark the growing popularity of science-based blogs, here’s a quick roundup of some blogs devoted to nanotechnology. Nanotechnology means many things to different people, and this diversity of points of view is reflected in the wide variety of perspectives on offer in the blogs.

From the point of view of business and the financial markets, TNTlog comes from Tim Harper, of the European consulting firm Cientifica. His posting frequency has dropped off recently, which is a pity, since this is a blog that manages to be both entertaining and well-informed, with a healthy scepticism about some of the wilder claims made on behalf of the “nanotechnology industry”. The web-portal nanotechnology.com hosts a contrasting pair of blogs. blog | nano, by Darrell Brookstein, is at the shriller end of the nanobusiness spectrum, while Steve Edwards’s blog combines commentary on nano financial markets with the odd extract from his (rather good) book – The Nanotech Pioneers.

Among blogs written by academics, there are those that come from scientists working inside the field, and some from social scientists whose interests run more towards the social issues surrounding nanotechnology. In the first category we have Nanoscale Views, by academic nanophysicist Doug Natelson. This combines capsule reviews of new condensed matter preprints and conference reports with more general observations about life as a junior faculty, and is at quite a high technical level. Martyn Amos is a computer scientist; his blog covers issues such as synthetic biology and chemical computing. The authors of Molecular Torch seem to be keen to keep their identities quiet, but from what they cover I’m guessing they work in the field of nanochemistry, with a particular interest in quantum dots. If you want to know what Soft Machines is about, just look around.

From the social science side of things, David Berube’s Nanohype casts a sceptical eye on the scene, leavening fairly detailed commentary on various reports and conferences with his enjoyably acerbic humour. Nano|Public, Dietram Scheufele, similarly covers public engagement issues from an academic point of view. Nanotechbuzz by George Elvin, is more general in its coverage, which reflects the interests of its author, an architecture professor with interest the relationship between nanotechnology and design.

A couple of blogs reflect the views of those interested in Drexler’s vision of molecular nanotechnology. The current market leader in the faith-based end of this space is Responsible Nanotechnology, from the Center for Responsible Nanotechnology, aka Mike Treder and Chris Phoenix. This pair have the most impressive output in terms of sheer volume. Their analysis is predicated on the unsupported assertion that desktop nanofactories could be with us in 10-15 years; any dissent from this view is met, not with rational argument, but with accusations of bad faith or scientific fraud. Nanodot, from the Foresight Nanotech Institute’s Christine Peterson, represents the more acceptable face of Drexlerism, combining reporting on current nanoscience developments and commentary about social and economic issues, with discussion of longer-ranged prospects, albeit in a framework of thorough-going technological determinism.

Finally, we have a couple of blogs written by professional writers. Howard Lovy’s Nanobot was a useful source of nano- commentary, particularly strong on charting the influence of nanotechnology on popular culture, before Howard’s move to the darkside of public relations led to a quiet period. Nanobot has recently gently restarted. A very welcome newcomer is homunculus from my favourite science writer, Philip Ball. The scope of homunculus goes well beyond nanotechnology, covering aspects of chemistry and physics ranging from the application of statistical mechanics to financial markets to the historical links between chemistry and fine arts. His most recent post contains much of the useful background information that didn’t make it into his recent news piece for Nature about the potential neurotoxicity of nanoscale titania.

My apologies to anyone I’ve missed out.

Printing devices

I spent a couple of days earlier this week at a conference in Manchester called “Printing of Functional Materials”. The premise of this meeting was the growing realisation that printing technologies, both the traditional, like silk-screen and gravure, and modern, like ink-jet, offer scalable, cheap and flexible ways of precisely depositing small quantities of materials on surfaces. Traditional inks are just vehicles for pigments to create static images, but there’s no reason why you can’t use printing to deposit materials that are conductors or semiconductors of electricity, which are electro-luminescent, or which have some biological functionality. Indeed, as one of the organisers of the conference has shown, one can even use ink-jet printing to deposit living human cells, with potential applications in tissue engineering.

The degree of commercial interest in these technologies was indicated by the fact that, unusually for an academic conference, more than a third of the attendees were from the commercial sector. Many of these were from the cluster of small and medium companies developing ink-jet technologies from around Cambridge, but European and American concerns were well represented too. My impression that the sector that is closest to maturity in this area is in electrically functional devices, where there’s a great deal of momentum to drive down the cost of RFID and to develop cheap, flexible displays. But there are still many materials issues to solve. It’s not easy to get a complex fluid to flow in the right way to form the tiny, well-defined droplets that make it ink-jet well, and formulating the ink in a way that makes it dry to give the best properties is awkward too. Silver inks illustrate the problems – commercial inks to write conducting lines sometimes use silver nanoparticles. Making the silver particles very small is helpful in making them coalesce well to make a continuous silver layer; the melting point of materials is lowered when they are in nanoparticulate form, making them sinter at lower temperatures. But then you have to work hard to stop the particles aggregating in the ink (it’s particularly undesirable, or course, if they aggregate in the ink-jet nozzle and block it up). To stabilise them, you need to coat them with surfactants or polymer molecules. But then this organic coating needs to be driven off by a heating step to get good conduction, and this compromises your ability to print on paper and plastics, which can’t take much heating. It seems to me that this technology has a huge amount of promise, but there’s a lot of materials science and colloid science to be done before it can fulfill its potential.

Nanoscale ball bearings or grit in the works?

It’s all too tempting to imagine that our macroscopic intuitions can be transferred to the nanoscale world, but these analogies can be dangerous and misleading. For an example, take the case of the buckyball bearings. It seems obvious that the almost perfectly spherical C60 molecule, Buckminster fullerene, would be an ideal ball bearing on the nanoscale. This intuition underlies, for example, the design of the “nanocar”, from James Tour’s group in Rice, that recently made headlines. But a recent experimental study of nanoscale friction by Jackie Krim, from North Caroline State University, shows that this intuition may be flawed.

The study, reported in last week’s Physical Review Letters (abstract here, subscription required for full article), directly measured the friction experienced by a thin layer sliding on a surface coated with a layer of buckminster fullerene molecules. Krim was able to directly compare the friction observed when the balls were allowed to rotate, with the situation when the balls were fixed. Surprisingly, the friction was higher for the rotating layers – here the ball-bearing analogy is seductive, but wrong.

In Seville

I’ve been in Seville for a day or so, swapping the Derbyshire drizzle for the Andalucian sun. I was one of the speakers in a meeting about Technology and Society, held in the beautiful surroundings of the Hospital de los Venerables. The meeting was organised by the Spanish writer and broadcaster Eduardo Punset, who also interviewed me for the science program he presents on Spanish TV.

As well as my talk and the TV interview, I also took part in a panel discussion with Alun Anderson, the former editor-in-chief of New Scientist. This took the form of a conversation between him and me, with an audience listening in. I hope they enjoyed it; I certainly did. As one would imagine, Anderson is formidably well- informed about huge swathes of modern science, and very well-connected with the most prominent scientists and writers. Among the topics we discussed were the future of energy generation and transmission, prospects for space elevators and electronic newspapers, Craig Venter’s minimal genome project, and whether we believed the premise of Ray Kurzweil’s most recent book, ‘The Singularity is Near’. Alun announced he would soon be appearing on a platform with a Ray Kurzweil’s live hologram, or thereabouts. However he did stress that this was simply because the corporeal Kurzweil couldn’t get to the venue in person, not because he has prematurely uploaded.

Lost comments

I apologise that a number of legitimate comments in recent days have been stopped by my spam filters – I’ve just rescued 6 of these from the moderation queue, where I had previously overlooked them amidst 519 spam comments. If you do make a comment which doesn’t appear (and this is most likely to happen to relatively long messages with lots of external links) you might want to alert me to this with a shorter comment. Anyway, my apologies to Brian Wang, Reza Fathollahzadeh, Moderate Transhumanist, NanoEnthusiast, sa. jafari and Michael Anissimov.

On my nanotechnology bookshelf

Following my recent rather negative review of a recent book on nanotechnology, a commenter asked me for some more positive recommendations about books on nanotechnology that are worth reading. So here’s a list of nanotechnology books old and new with brief comments. The only criterion for inclusion on this list is that I have a copy of the book in question; I know that there are a few obvious gaps. I’ll list them in the order in which they were published:

Engines of Creation, by K. Eric Drexler (1986). The original book which launched the idea of nanotechnology into popular consciousness, and still very much worth reading. Given the controversy that Drexler has attracted in recent years, it’s easy to forget that he’s a great writer, with a very fertile imagination. What Drexler brought to the idea of nanotechnology, which then was dominated, on the one hand by precision mechanical engineering (this is the world that the word nanotechnology, coined by Taniguchi, originally came from), and on the other by the microelectronics industry, was an appreciation of the importance of cell biology as an exemplar of nanoscale machines and devices and of ultra-precise nanoscale chemical operations.

Nanosystems: Molecular Machinery, Manufacturing, and Computation , by K. Eric Drexler (1992). This is Drexler’s technical book, outlining his particular vision of nanotechnology – “the principles of mechanical engineering applied to chemistry” – in detail. Very much in the category of books that are often cited, but seldom read – I have, though, read it, in some detail. The proponents of the Drexler vision are in the habit of dismissing any objection with the words “it’s all been worked out in ‘Nanosystems'”. This is often not actually true; despite the deliberately dry and textbook-like tone, and the many quite complex calculations (which are largely based on science that was certainly sound at the time of writing, though there are a few heroic assumptions that need to be made), many of the central designs are left as outlines, with much detail left to be filled in. My ultimate conclusion is that this approach to nanotechnology will turn out to have been a blind alley, though in the process of thinking through the advantages and disadvantages of the mechanical approach we will have learned a lot about how radical nanotechnology will need to be done.

Molecular Devices and Machines : A Journey into the Nanoworld , by Vincenzo Balzani, Alberto Credi and Margherita Venturi (2003). The most recent addition to my bookshelf, I’ve not finished reading it yet, but it’s good so far. This is a technical (and expensive) book, giving an overview of the approach to radical nanotechnology through supramolecular chemistry. This is perhaps the part of academic nanoscience that is closest to the Drexler vision, in that the explicit goal is to make molecular scale machines and devices, though the methods and philosophy are rather different from the mechanical approach. A must, if you’re fascinated by cis-trans isomerisation in azobenzene and intermolecular motions in rotaxanes (and if you’re not, you probably should be).

Bionanotechnology : Lessons from Nature, by David Goodsell (2004). I’m a great admirer of the work of David Goodsell as a writer and illustrator of modern cell biology, and this is a really good overview of the biology that provides both inspiration and raw materials for nanobiotechnology.

Soft Machines : Nanotechnology and Life, by Richard Jones (2004). Obviously I can’t comment on this, apart from to say that three years on I wouldn’t have written it substantially differently.

Nanotechnology and Homeland Security: New Weapons for New Wars , by Daniel and Mark Ratner (2004). I still resent the money I spent on this cynically titled and empty book.

Nanoscale Science and Technology, eds Rob Kelsall, Ian Hamley and Mark Geoghegan (2005). A textbook at the advanced undergraduate/postgraduate level, giving a very broad overview of modern nanoscience. I’m not really an objective commentator, as I co-wrote two of the chapters (on bionanotechnology and macromolecules at interfaces), but I like the way this book combines the hard (semiconductor nanotechnology and nanomagnetism) and the soft (self-assembly and bionano).

Nanofuture: What’s Next For Nanotechnology , by J. Storrs Hall (2005). Best thought of as an update of Engines of Creation, this is a an attractive and well-written presentation of the Drexler vision of nanotechnology. I entirely disagree with the premise, of course.

Nano-Hype: The Truth Behind the Nanotechnology Buzz, by David Berube (2006). A book, not about the science, but about nanotechnology as a social and political phenomenon. I reviewed in detail here. I’ve been referring to it quite a lot recently, and am increasingly appreciating the dry humour hidden within its rather complete historical chronicle.

The Dance of Molecules : How Nanotechnology is Changing Our Lives , by Ted Sargent (2006). Reviewed by me here, it’s probably fairly clear that I didn’t like it much.

The Nanotech Pioneers : Where Are They Taking Us?, by Steve Edwards (2006). In contrast to the previous one, I did like this book, which I can recommend as a good, insightful and fairly nanohype-free introduction to the area. I’ve written a full review of this, which will appear in “Physics World” next month (and here also, copyright permitting).

Which nation’s scientific output is rising fastest?

China, you might say, but you’d be wrong, according to a study of world rankings in science published recently by the UK government (latest DTI study into the outputs and outcomes from UK science – 920 kB PDF). This looks at a variety of input and output measures to construct a fairly complete picture of the distribution of scientific activity and impact around the world. Notwithstanding the surprising answer to my trick question (revealed at the end of this post), this report confirms the rapid growth of China as scientific power, the lessening of the formerly unchallenged dominance of the USA, and (from a parochial perspective) the rather strong performance of the UK, which spends less on research and has fewer researchers than its competitors, but nonetheless in comparison produces proportionately more science with a greater impact.

It’s in spending on science research that the rise of China is most obvious – in real terms (adjusted for purchasing power parity) China’s research spend has increased four-fold in the last decade; it now exceeds that of all other individual countries except USA and Japan, and has reached half the European Union total. In terms of output of scientific publications, China now has a 5% world share, up by a factor of three in the last decade, and now greater than France. Again, in terms of individual nations the USA still leads by this output measure, with almost exactly one third of world output, but the European Union nations taken together have now outstripped the USA, with 37.9% of publications. The UK, at just less than 9%, is the second placed individual nation, having recently overtaken Japan. If we took the Asia-Pacific group of China, Korea, Taiwan and Singapore together they would account for 10% of world output.

What about quality and impact? Here the USA still has a clear lead; taking as a measure of world impact the share of the most highly cited papers (taken as the top 1% in each discipline) puts the USA in the lead with 61%, while the UK outperforms its volume share with 13% of highly cited papers. China still underperforms on this measure but the gap is closing, and is likely to close further as citation counts are a lagging indicator – it takes some years for spending on science to translate, first into publication outputs, and only later into citations of those papers by other workers.

The country whose output of scientific publications has increased the most over the last decade is Iran, whose output has increased by a factor of ten, albeit from a low base (China’s increased by a factor of three, the second fastest rate of growth). It will be interesting to see, in the light of recent political developments, whether Iran’s good performance will continue.

Forthcoming nano events in Sheffield

A couple of forthcoming events might interest nano-enthusiasts at a loose end in South Yorkshire in the next few weeks. Next Monday at 7pm, there’s a public lecture as part of National Science Week in the Crucible Theatre, called “A robot in the blood”. In it, my colleagues Tony Ryan and Noel Sharkey, will discuss what a real medical nanobot might look like. Both are accomplished public performers – Tony Ryan is a chemist (with whom I collaborate extensively) who gave the Royal Institution Christmas lectures a couple of years ago, and Noel Sharkey is an engineer and roboticist who regularly appears in the TV program “Robot Wars”.

Looking further ahead, on Monday April 3rd there is a one day meeting about “Nanotechnology in Society: The wider issues”. This will involve talks from commentators on nanotechnology from different view points, followed by a debate. Speakers include Olaf Bayer, from the campaigning group Corporate Watch, Jack Stilgoe, from the public policy thinktank Demos, Stephen Wood, co-author (with me and Alison Geldart) of the Economic and Social Reseach Council report “The Social and Economic Challenges of Nanotechnology”, and Rob Doubleday, a social scientist working in the Cambridge Nanoscience Centre. The day is primarily intended for the students of our Masters course in Nanoscale Science and Technology, but anyone interested is welcome to attend; please register in advance as described here.