Nanotechnology in the UK news next week

Some high profile events in London next week mean that nanotechnology may move a little way up the UK news agenda. On Monday, there’s an event at the Houses of Parliament: Nano Task Force Conference: Nanotechnology – is Britain leading the way? The Nano Task Force in question is a ginger group set up by Ravi Silva, at the University of Surrey, with political support from Ian Gibson MP. Gibson is a Labour Member of Parliament, one of the rare breed of legislators with a science PhD, and a reputation for being somewhat independent minded.

On Tuesday, public engagement is the theme, with an all-day event “All Talk? Nanotechnologies and public engagement” at the Institute of Physics. This is a joint launch; the thinktank Demos and the Nanotechnology Engagement Group are both launching reports. The Demos report is on a series of public engagement exercises, The Nanodialogues, while Nanotechnology Engagement Group final report is an overview of the lessons learnt from all the engagement activities around nanotechnology conducted so far in the UK. The keynote speaker is Sir David King, the government’s chief scientific advisor.

I’m involved in both, giving a talk on the potential of nanotechnology for sustainable energy on Monday, and Tuesday chairing one session and being a panel member on another. Other participants include Sheila Jasanoff from Harvard, David Edgerton, the author of the recently published book “The Shock of the Old”, Ben Goldacre, the writer of the Guardian’s entertaining ‘Bad science’ column, Andy Stirling, from Sussex, James Wilsdon and Jack Stilgoe from Demos, Doug Parr from Greenpeace, and David Guston, the Director of the Center for Nanotechnology in Society at Arizona State University. It promises to be a fascinating day.

The Nottingham nanotechnology and nanoscience centre

Today saw the official opening of the Nottingham nanotechnology and nanoscience centre, which brings together some existing strong research areas across the University. I’ve made the short journey down the motorway from Sheffield to listen to a very high quality program of talks, with Sir Harry Kroto, co-discoverer of buckminster fullerene, taking the top of the bill. Also speaking were Don Eigler, from IBM (the originator of perhaps the most iconic image in all nanotechnology, the IBM logo made from individual atoms) Colin Humphreys, from the University of Cambridge, and Sir Fraser Stoddart, from UCLA.

There were some common themes in the first two talks (common, also, with Wade Adams’s talk in Norway described below). Both talked about the great problems of the world, and looked to nanotechnology to solve them. For Colin Humphries, the solutions to problems of sustainable energy and clean water are to be found in the material gallium nitride, or precisely in the compounds of aluminium, indium and gallium nitride which allow one to make, not just blue light emitting diodes, but LEDs that can emit light of any wavelength between the infra-red and the deep ultra-violet. Gallium nitride based blue LEDs were invented as recently as 1996 by Shuji Nakamura, but this is already a $4 billion market, and everyone will be familiar with torches and bicycle lights using them.

How can this help the problem of access to clean drinking water? We should remind ourselves that 10% of world child mortality is directly related to poor water quality, and half the hospital beds in the world occupied by people with water related diseases. One solution would be to use deep ultraviolet to sterilise contaminated water. Deep UV works well for sterilisation because biological organisms never developed a tolerance to these waves, which don’t penetrate the atmosphere. UV at a wavelength of 270 nm does the job well, but existing lamps are not practical because they need high voltages and are not efficient, and also some use mercury. AlGaN LEDS work well, and in principle they could be powered by solar cells at 4 V, which might allow every household to sterilise its water supply easily and cheaply. The problem is efficiency is too low for flowing water. At blue wavelengths (400 nm) efficiency is very good at 70%, but it drops precipitously at smaller wavelengths, and this is not yet understood theoretically.

The contribution of solid state lighting to the energy crisis arises from the efficiency of LEDs compared to tungsten light bulbs. People often underestimate the amount of energy used in lighting domestic and commercial buildings. Globally, it accounts for 1,900 megatonnes of CO2; this is 70% of the total emissions from cars, and three times the amount due to aviation. In the UK, it amounts to 20% of electricity generated, and in Thailand, for example, it is even more, at 40%. But tungsten light bulbs, which account for 79% of sales, have an efficiency of only 5%. There is much talk now of banning tungsten light bulbs, but the replacement, fluorescent lights, is not perfect either. Compact fluorescents have an efficiency of 15%, which is an improvement, but what is less well appreciated is that each bulb contains 4 mg of mercury. This would lead to tonnes of mercury ending up in landfills if tungsten bulbs were replaced by compact fluorescents.

Could solid-state lighting do the job? Currently what you can buy are blue LEDs (made from InGaN) which excite a yellow phosphor. The colour balance of these leaves something to be desired, and soon we will see blue or UV LEDs exciting red/green/blue phosphors which will have a much better colour balance (you could also use a combination of red, green and blue LEDs, but currently green efficiencies are too low). The best efficiency in a commercial white LED is 30% (from Seoul Semiconductor), but the best in the lab (Nichia) is currently 50%. The target is an efficiency of 50-80% at high drive currents, which puts them at a higher efficiency than the current most efficient light, sodium lamps, whose familiar orange glow converts electricity at 45% efficiency. This target would make them 10 times more efficient than filaments, 3 times more efficient than compact fluorescents and with no mercury. In the US the 50% replacement of filaments would save 41 GW, in the UK 100% replacement would save 8 GW of power station capacity. The problem at the moment is cost, but the rapidity of progress in this area means that Humphries is confident that within a few years costs will fall dramatically.

Don Eigler also talked about societal challenges, but with a somewhat different emphasis. His talk was entitled “Nanotechnology: the challenge of a new frontier”. The questions he asked were “What challenges do we face as a society in dealing with this new frontier of nanotechnology, and wow should we as a society make decisions about a new technology like nanotechnology?”

There are three types of nanotechnology, he said: evolutionary nanotechnology (historically larger technologies that have been shrunk to nanoscale dimensions), revolutionary nanotechnology (entirely new nanometer-scale technologies) and natural nanotechnology (cell biology, offering inspirations for our own technologies). Evolutionary nanotechnologies include semiconductors, nanoparticles in cosmetics. Revolutionary nanotechnologies include carbon nanotubes, for potential new logic structures that might supplant silicon, and the IBM millipede data storage system. Natural nanotechnologies include bacterial flagellar motors.

Nanohysteria comes into different varieties too. Type 1 nanohysteria is represented by greed driven “irrational exuberance”, and is based on the idea that nanotechnology will change everything very soon, as touted by investment tipsters and consultants who want to take people’s money off them. What’s wrong with this is the absence of critical thought. Type 2 nanohysteria is the opposite – fear driven irrational paranoia exemplified by the grey goo scenario of out of control self-replicating molecular assemblers or nanobots. What’s wrong with this is again, the absence of critical thought. Prediction is difficult, but Eigler thinks that self-replicating nanobots are not going to happen any time soon, if ever.

What else do people fear about nanotechnology? Eigler recently met a young person with strong views, that nanotech is scary, it will harm the biosphere, it will create new weapons, it is being driven by greedy individuals and corporations, in summary it is not just wrong, it is evil. Where did these ideas come from? If you look on the web – you see talk of superweapons made from molecular assemblers. What you don’t find on the web are statements like “My grandmother is still alive today because nanotechnology saved her life”. Why is this? Nanotechnology has not yet provided a tangible benefit to grandmothers!

Some candidates include gold nanoshell cancer therapy, as developed by Naomi Halas at Rice. This particular therapy may not work in humans, but something similar will. Another example is the work of Sam Stupp at Northwestern, making nanofibers that cause neural progenitor cells turn into new neurons, not scar tissue, holding out the hope of regenerative medicine to repair spinal cord damage.

As an example of wrong conclusions, Eigler made the smallest logic circuit, 12nm by 17 nm, made from carbon monoxide. But carbon monoxide is a deadly poison – shouldn’t we worry about this? Let’s do the sum – 18 CO molecules are needed for one transistor. The context is that I breathe 2 billion trillion molecules a day, so every day I breathe enough to make 160 million computers.

What could the green side of nanotechnology be? We could have better materials, that are lighter, stronger and more easily recyclable, and this will reduce energy consumption. Perhaps we can use nanotechnology to reduce consumption of natural resources and helping recycling. We can’t prove yet that these good benefits will follow, but Eigler believes they are likely.

There is a real risk of nanotechnology, if it is used without evaluating the consequences. The widespread introduction of nanoparticulates into the environment would be an example of this. So how do we now if something is safe? We need to think it through, but we can’t guarantee absolutely that anything can be absolutely safe. The principles should be that we eliminate fantasies, understand the different motivations that people have, and honestly assess risk and benefit. We need informed discussion, that is critical, creative, inclusive and respectful. We need to speak with knowledge and respect, and listen with zeal. Scientists have not always been good at this and we need to get much better. Our best weapons are our traditions of rigorous honesty and our tolerance for diverse beliefs.

Optimism and pessimism in Norway

I’m in Bergen, Norway, at a conference, Nanomat 2007, run by the Norwegian Research Council. The opening pair of talks – from Wade Adams, of Rice University and Jürgen Altmann, from Bochum, presented an interesting contrast of nano-optimism and nano-pessimism. Here are my notes on the two talks, hopefully more or less reflecting what was said without too much editorial alteration.

The first talk was from Wade Adams, the director of Rice University’s Richard E. Smalley Institute, with the late Richard Smalley’s message “Nanotechnology and Energy: Be a scientist and save the world”. Adams gave the historical background to Smalley’s interest in energy, which began with a talk from a Texan oilman explaining how rapidly oil and gas were likely to run out. Thinking positively, if one has cheap, clean energy most of the problems of the world – lack of clean water, food supply, the environment, even poverty and war – are soluble. This was the motivation for Smalley’s focus on clean energy as the top priority for a technological solution. It’s interesting that climate change and greenhouse gases was not a primary motivation for him; on the other hand he was strongly influenced by Hubbert (see http://www.princeton.edu/hubbert) and his theory of peak oil. Of course, the peak oil theory is controversial (recent a article in Nature – That’s oil, folks, subscription needed – for an overview of the arguments), but whether oil production has already peaked, as the doomsters suggest, or the peak is postponed to 2030, it’s a problem we will face at sometime or other. On the pessimistic side, Adams cited another writer – Mat Simmons – who maintains that oil production in Saudi Arabia – usually considered the reserve of last resort – has already peaked.

Meanwhile on the demand side, we are looking at increasing pressure. Currently 2 billion people have no electricity, 2 billion people rely on biomass for heating and cooking, the world’s population is still increasing and large countries such as India and China are industrialising fast. One should also remember that oil has more valuable uses than simply to be burnt – it’s the vital feedstock for plastics and all kinds of other petrochemicals.

Summarising the figures, the world (in 2003) consumed energy at a rate of 14 terawatts, the majority in the form of oil. By 2050, we’ll need between 30 and 60 terawatts. This can only happen if there is a dramatic change – for example renewable energy stepping up to deliver serious (i.e. measured in terawatts) amounts of power. How can this happen?

The first place to look is probably efficiencies. In the United States, about 60% of energy is currently simply wasted, so simple measures such as using low energy light bulbs and having more fuel-efficient cars can take us a long way.

On the supply side, we need to be hard-headed about evaluating the claims of various technologies in the light of the quantities needed. Wind is probably good for a couple of terawatts at most, and capacity constraints limit the contribution nuclear can make. To get 10 terawatts of nuclear by 2050 we need roughly 10,000 new plants – that’s one built every two days for the next 40 years, which in view of the recent record of nuclear build seems implausible. The reactors would in any case need to be breeders to avoid the consequent uranium shortage. The current emphasis on the hydrogen economy is a red herring, as it is not a primary fuel.

The only remaining solution is solar power. 165,000 TW hits the earth in sunlight. The problem is that the sunlight doesn’t arrive in the right places. Smalley’s solution was a new energy grid system, in which energy is transmitted through wires rather than in tankers. To realise this you need better electrical conductors (either carbon nanotubes or superconductors), and electrical energy storage devices. Of course, Rice University is keen on the nanotube solution. The need is to synthesise large amounts of carbon nanotubes which are all of the same structure, the structure that has metallic properties rather than semiconducting ones. Rice had been awarded $16 million from NASA to develop the scale-up of their process for growing metallic nanotubes by seeded growth, but this grant was cancelled amidst the recent redirection of NASA’s priorities.

Ultimately, Adams was optimistic. In his view, technology will find a solution and it’s more important now to do the politics, get the infrastructure right, and above all to enthuse young people with a sense of mission to become scientists and save the world. His slides can be downloaded here (8.4 MB PDF file).

The second, much more pessimistic, talk was from Jürgen Altmann, a disarmament specialist from Ruhr-Universität Bochum. His title was “Nanotechnology and (International) Society: how to handle the new powerful technologies?” Altmann is a physicist by original training, and is the author of a book, Military nanotechnology: new technology and arms control.

Altmann outlined the ultimate goal of nanotechnology as the full control of the 3-d position of each atom – the role model is the living cell, but the goal goes much beyond this, going beyond systems optimised for aqueous environments to those that work in vacuum, high pressure, space etc., limited only by the laws of nature. Altmann alluded to the controversy surrounding Drexler’s vision of nanotechnology, but insisted that no peer-reviewed publication had succeeded in refuting it.

He mentioned the extrapolations of Moore’s law due to Kurzweil, with the prediction that we will have a computer with a human being’s processing power by 2035. He discussed new nanomaterials, such as ultra-strong carbon nanotubes making the space elevator conceivable, before turning to the Drexler vision of mechanosynthesis, leading to a universal molecular assembler, and discussing consequences like space colonies and brain downloading, before highlighting the contrasting utopian and dystopian visions of the outcome – one the one hand, infinitely long life, wealth without work and clean environment, on the other hand, the consumption of all organic life by proliferating nanorobots (grey goo).

He connected these visions to transhumanism – the idea that we could and should accelerate human evolution by design, and the perhaps better accepted notion of converging technologies – NanoBioInfoCogno – which has taken up somewhat different connotations either side of the Atlantic (Altmann was on the working group which produced the EU document on converging technologies). He foresaw the benefits arising on a 20 year timescale, notably direct broad-band interfaces between brain and machines.

What, then, of the risks? There is the much discussed issue of nanoparticle toxicity. How might nanotechnology affect developing countries – will the advertised benefits really arise? We have seen a mapping of nanotechnology benefits onto the Millennium Development Goals looked by the Meridian Institute. But this has been criticised, for example by N. Invernizzi, (Nanotechnology Law and Business Journal 2 101-11- (2005)). High productivity will mean less demand for labour, there might be a tendency to neglect non-technological solutions, there might be a lack of qualified personnel. He asked what will happen if India and China succeed with nano, will that simply increase internal rich-poor divisions within those countries? The overall conclusion is that socio-economic factors are just as important as technology.

With respect to military nanotechnology, there are many potential applications, including smaller and faster electronics and sensors, lighter and faster armour and armoured vehicles, miniature satellites, including offensive ones. Many robots will be developed, including nano-robots, including biotechnical hybrids – electrode controlled rats and insects. Medical nanobiotechnology will have military applications – capsules for controlled release of biological and chemical agents, mechanisms for targeting agents to specific organs, but also perhaps to specific gene patterns or proteins, allowing chemical or biological warfare to be targeted against specific populations.

Military R&D for nano is mostly done in the USA, where it accounts for 1/4 – 1/3 of federal funding. At the moment, the USA spends 4-10 times as much as the rest of the world, but perhaps we can shortly expect other countries with the necessary capacity, like China and Russia, to begin to catch up.

The problem of military nanotechnology from an arms control point of view is that limitation and verification is very difficult – much more difficult than the control of nuclear technology. Nano is cheap and widespread, much more like biotechnology, with many non-military uses. Small countries and non-state actors can use high technology. To control this will need very intrusive inspection and monitoring – anytime, anyplace. Is this compatible with military interest in secrecy and the fear of industrial espionage?

So, Altmann asks, Is the current international system up to this threat? Probably not, he concludes, so we have two alternatives: increasing military and terrorist threats and marked instability, or the organisation of global security in another way, involving some kind of democratic superstate, in which existing states voluntarily accept reduced sovereignty in return for greater security.

In praise of Vaclav Smil

In my efforts to educate myself about how new technologies might impact on our economy and society, the author from whom I’ve learnt the most is unquestionably Vaclav Smil. Smil is a Professor in the Department of Environment and Geography at the University of Manitoba, but his writings cover the whole sweep of the interaction of technology and society. What I appreciate about his books is their emphasis on rigorous quantification, their long historical perspective and global span (Smil is an expert on China, among many other things), and their grounding in the things that matter – how we get the food we eat and the energy that underlies our lifestyles.

My introduction to Smil’s work came when I needed a rapid introduction to energy economics. His 2003 book Energy at the Crossroads: global perspectives and uncertainties does this job in an admirably clear-headed and realistic way. It has a particularly sobering view of the poor record of energy forecasting in the past, and of the evolution of linkages between economic growth and output and energy inputs. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production takes a historical view of the linkage between energy and food. Few people nowadays stop to think about the importance of artificial nitrogen fixation, powered by fossil fuels, in feeding the world. Yet it is clear that without artificial fertilizers more than half of the current population of the earth would not be alive today. We are effectively surviving by eating oil. This theme is developed in Feeding the World: A Challenge for the Twenty-First Century, which asks the fundamental question, just how many people could the world feed? After a period of plentiful and cheap food, at least in the West, we’ve forgotten about some of the more apocolyptic visions of mass famine. Yet the world food supply equation is probably more fragile than we’d like to think. This is likely to get worse, as climate change, water shortages, and environmental degradation puts pressure on yields, and increasing demand for biofuels increases demand for non-food uses of crops.

Many of these themes are brought together, with many other trends, in two of Smil’s most recent books, Creating the Twentieth Century: Technical Innovations of 1867-1914 and Their Lasting Impact and Transforming the Twentieth Century: Technical Innovations and Their Consequences . Taken together, these two volumes offer the best overview of how the world we live in now has developed that I know of. At one level, this is simply a narrative history of modern technology, albeit one that takes a holistic view of the way in which many different inventions come together to make important innovations possible. In this sense, it’s the story of accelerating change, in which one technological development facilitates another. But he is explicitly dismissive of those who are too quick to plot exponential curves and extrapolate from them. The title of his first book makes it clear that in Smil’s view, the true technological revolution took place in the last part of the 19th century, and what we have seen since then is largely the unfolding of the developments that were initiated in this great saltation. And he is by no means certain that the rapid change will continue, noting the degree to which it has been built on a massive, and probably unsustainable, growth in energy consumption. His agnostic outlook is summed up in the last chapter, where he asks:

“have the last six generations of great technical innovations and transformations merely been the beginning of a new extended era of unprecedented accomplishments and spreading and sustained affluence – or have they been a historically ephemeral aberration that does not have any realistic chance of continuing along the same, or a similar trajectory, for much longer?”

Ideologies and nanotechnology

There are many debates about nanotechnology; what it is, what it will make possible, and what its dangers might be. On one level these may seem to be very technical in nature. So a question about whether a Drexler style assembler is technically feasible can rapidly descend into details of surface chemistry, while issues about the possible toxicity of carbon nanotubes turn on the procedures for reliable toxicological screening. But it’s at least arguable that the focus on the technical obscures the real causes of the arguments, which are actually based on clashes of ideology. We supposedly live in a non-ideological age, so what are the ideological divisions that underly debates about nanotechnology? I suggest, for a start, these four ideological positions, each of which implies a very different attitude towards nanotechnology.

  • Transhuman. Transhumanists look forward to a time in which technology allows humanity to transcend its current physical and mental limits. Radical nanotechnologies are essential to the fulfillment of this vision, so the attitude of transhumanists to nanotechnology in its most radical, Drexlerian form, is that it is not only inevitable but morally mandated.
  • Transglobal. Those who accept the current neo-liberal, globalising consensus look to new technologies as a driver for further economic growth. Nanotechnology is expected to lead to changes which may be disruptive to individual business sectors, but which probably won’t fundamentally change global socio-economic systems.
  • Deep Green. To radical environmentalists, our current urban, industrial economic system is unsustainable. Technologies are regarded as in large measure responsible for the difficulties we are now in, and a return to more rural, post-industrial, locally based economies is regarded as not only desirable but inevitable. Nanotechnology is, like most new technologies, viewed with deep distrust, as very likely to lead to undesirable and possibly unintended consequences.
  • Bright Green. Another strand of environmentalists share with Deep Greens the conviction that the current socio-economic system is unsustainable, but are confident that new technology and imaginative design will make possible an urban culture with a high standard of living that is sustainable. These people look with enthusiasm to nanotechnology for new sustainable energy systems and decentralised, low waste manufacturing processes.

When one sees a debate about nanotechnology start to get heated, it’s perhaps worth asking what the ideological positions of the debaters are, and whether an apparently technical argument is actually a proxy for an ideological one.

Everyware

This week’s Economist has a very interesting survey of the future of wireless technology, which assesses progress towards ubiquitous computing and “the internet of things” – the idea that in the near future pretty well every artefact will carry its own computing power, able to sense its environment and communicate wirelessly with other artefacts and computer systems. The introductory article and the (rather useful) list of sources and links (including the book by Adam Greenfield – Everyware: The Dawning Age of Ubiquitous Computing – whose title I’ve appropriated for my post) are freely available; for the other seven articles you need a subscription (or you could just buy a copy from the newstand).

Evolutionary nanotechnology is likely to contribute to these developments in at least two ways; by making possible a wide range of sensors able to detect, for example, very small concentrations of specific chemicals in the environment, and, through technologies like plastic electronics, by making possible the mass-production of rudimentary computing devices at tiny cost. Even with current technology, these developments are sure to raise privacy and security issues, but equally may make possible unimagined benefits in areas such as health and energy efficiency. The Economist’s survey finishes on an uncharacteristically humble note: “There is no saying how it will be used, other than it will surprise us.”

Nanotechnology: Some questions for social scientists

In 2003 I was one of the coauthors of a report – ‘The Social and Economic Challenges of Nanotechnology’ (PDF) – commissioned by the UK’s Economic and Social Research Council – this is the body which distributes government research funding to social scientists. Last year the ESRC commissioned me and my coauthors, Stephen Wood and Alison Geldart, to write a follow-up report summarising the way the debate about nanotechnology had evolved over the intervening years. The follow up report is now available from the ESRC web-site – Nanotechnology: from the science to the social (2 MB PDF) – and for those with a shorter attention span a short briefing (765 kB PDF) is also available.

One of our aims was to identify some questions that we thought were worthy of further study by social scientists. Here are some of the issues we thought were worth some more study:

The development of nanotechnology

Nanotechnology has some unique features as a case study for the social science of science, as it appears to have arisen not just as a natural development from existing disciplines, but at least partly as a result of external factors. This poses a number of interesting questions:
1) Is nanotechnology developing into a distinct field – that is, are there social and institutional pressures causing scientists in well-established disciplines such as chemistry and physics to assume a new disciplinary identity?
2) Is the nucleation of the field of nanotechnology, if this indeed is taking place, an integral part of the transformation of science from Mode 1-type to Mode 2-type and is nanotechnology being developed as a field precisely by those scientists who embrace Mode 2 values?
3) Are the grand visions associated with radical views of nanotechnology influential in shaping the development of science and technology, despite the rejection by many scientists of the assumptions on which they are based?

Nanotechnology, industry and the economy

Nanotechnology poses important questions in relation to technological innovation and its relationship to wealth creation. Governments and agencies worldwide are providing substantial financial support for nanotechnology on the basis of tacit or explicit assumptions that this support will yield substantial economic dividend. These assumptions need critical examination; some questions that arise include the following:
1) Is there, or will there ever be, a nanotechnology industry?
2) Will there be “nanotech” clusters comparable to “biotech” and information technology clusters?
3) Will these be geographical clusters, or could there be virtual clusters?
4) Will there be clusters associated with discrete sub-areas of nanotechnology, such as (for example) bionanotechnology for diagnostics?
5) As governments look to nanotechnology as a driver of innovation and economic growth, tacit or explicit models of the innovation process are being invoked to help frame policy. Are these models of innovation applicable to nanotechnology (or indeed any other new technology)?

Nanotechnology and internationalisation

Government support for Nanotechnology has included non-western countries and the EU, making it a unique and important case study in the further internationalisation of science and innovation. Questions that arise from this include:
1) What is the scope for government policy to influence innovations in the nanotechnology area, both between and within organisations, in an increasingly global economy?
2) Is there an emerging international division of labour in the development of nanotechnology?
3) Can nanotechnology make significant contributions to the development of less-developed countries? Contrasts between China and India, which are receiving most attention, with countries where nanotechnology has been given a significant role in plans but are receiving less attention, like Brazil, may be instructive.
4) Is there any truth in the caricature of the ‘Wild East’, i.e. a place without ethical or intellectual property-bound constraints unfairly competing with western countries?
5) As nanotechnology may be the first science in modern times in which substantial and original developments take place in non-western cultures, can it offer any insights about cultural relativism in science?

Technology development and society

The portrayal of nanotechnology in popular culture is strongly influenced by social movements outside the scientific mainstream. The significance of this unusual feature should be examined:
1) Some futurists argue that nanotechnology itself is accelerating the rate of technological change and hence social change – does this stand up to scrutiny?
2) How does nanotechnology fit into broader social movements about technology development, and do such movements depend on grand visions (positive or negative)?
3) Is there any significance to those movements, such as transhumanism, which are associated with the promotion of more futuristic visions of nanotechnology? What role do these movements have in shaping broader societal debates, such as the nascent debate about human enhancement?

Public engagement

The widespread consensus about the desirability of public engagement in connection with nanotechnology should receive some critical scrutiny:
1) The public engagement activities and the methods used could be evaluated, including a cross-country comparison of the various experiments in it and the role of the dissemination of scientific knowledge within this process.
2) While accepting the force of the critique of the deficit model of public understanding, one needs to understand the origins of the public’s understanding of nanotechnology, and particularly the relative influence of the various interest groups, whose visions of nanotechnology may be very different, as well as popular media, serious journalism, science fiction, and computer games.

An uncertain business

Last November, the Royal Society hosted an event at which companies were asked the question “How can business respond to the technical, social and commercial uncertainties of nanotechnology?” I was one of only a couple of academics at the event, which attracted representatives of 17 companies, many of them very large household names not previously associated with nanotechnology. The event took place somewhat under the radar, and was conducted under Chatham House rules, allowing the participants to speak freely without what they said being attributed to them. However, some information about the day has now been released in the form of this short workshop report (PDF).

The joint sponsors of the day were Royal Society, the Nanotechnology Industries Association, and Insight Investment. The Royal Society’s interest is obvious, in view of its long-standing involvement in considering the broader implications of nanotechnology, and it’s no surprise that the NIA, a newly established trade association, would want to be involved. The participation of Insight Investment is perhaps more surprising and interesting; this is a fund manager with around £100 billion in investments. This means that they hold, on behalf of clients including large institutions and pension funds, substantial equity stakes in many of the companies that took part. Thus they have a direct financial interest in whether the companies in question are in a position to exploit business opportunities that arise from the uses of nanotechnology, and can deal sensibly with any uncertainties that might arise.

The position paper that was written to inform the discussion – An uncertain business (PDF) – is now also available. This divides the uncertainties that might be associated with nanotechnology into three categories. Technical uncertainties include the well-known issues about possible toxicity of nanoscale materials, while social uncertainties involve the different ways in which people might react to new products involving nanotechnology. But many of the participants were exercised by possible commercial uncertainties, that is to say issues such as the potential risks to brand value that bad publicity might lead to, together with risks to cost of capital and insurance that might arise from adverse opinion in the financial and insurance markets.

Meanwhile, in my dungeon laboratory…

The Council for Science and Technology report, which criticised the UK government’s record in getting research going on the health and environmental effects of nanoparticles, has led to quite a lot of media coverage, of various degrees of inaccuracy. My favourite is this story in The Register: UK government slated by own boffins on nanotech policy. Taking its cue from the Science Minister’s line – which seemed to be, in effect, we gave the scientists lots of money but they chose to spend it doing exciting new science rather than getting the toxicology right, The Register’s Lewis Page sagely commented:

“This has been true ever since the first mad professor set up his dungeon laboratory, of course. Any scientist worth his salt would rather work out how to make dead flesh live again than write up the safety case for doing it. Even so, it’s nice to see boffins finally admitting this.”

This is irresponsible and gratuitously stereotyping journalism, of course, but I thought it was funny.

A critical verdict on the UK’s nanotoxicology record

As I trailed a couple of days ago, the Council for Science and Technology yesterday published their report assessing the UK government’s progress in meeting the commitments it made in response to the 2004 Royal Society report on Nanotechnology. The report, Nanoscience and Nanotechnologies: A Review of Government’s Progress on its Policy Commitments (PDF, 327kB), is, as widely expected, rather critical of the Government’s response, particularly on the issue of funding research and providing an evidence base in the area of nanoparticle toxicology. This BBC online piece picks up most of the major themes.

The thrust of the report is unequivocal – the government promised an extensive program of research into the toxicology and health and environmental effects of nanomaterials, and this research has not happened. The reason for this is equally clear – money wasn’t set aside to fund it. Instead, it was decided to rely on scientists coming forward with funding proposals to be judged, in competition with proposals in other areas of science, by peer review. That this approach would prove to be completely inadequate was widely predicted at the time, and those predictions turned out to be entirely correct. As I wrote myself a year ago here: ‘This seems to me to be a category error – the science we need to underpin regulation isn’t necessarily good science as defined by peer review, and if the capacity to do the research isn’t there one can’t just expect it to appear spontaneously.”

The Science Minister, Malcolm Wicks, was questioned about the report on this morning’s BBC Radio 4 Today program. In his interview – downloadable here as an MP3 file (the interview is the last item) – he accepts the basic thrust of the criticism, but blames the reseach councils (in particular the Medical Research Council) for not being proactive, and scientists for not coming forward with the proposals. This, of course, is precisely the point. To be fair to him, he’s taking the flak for decisions made by his predecessor. A full, formal government response to the CST report will presumably follow.