I’m in St Gallen, Switzerland, in the unfamiliar environment (for an academic) of a nanotechnology trade fair. The commercialisation arm of our polymer research activities in the University of Sheffield, the Polymer Centre, is one of the 14 UK companies and organisations that are exhibiting as part of the official UK government stall at Nanofair 2004.
It’s interesting to see who’s exhibiting. The majority of exhibitors are equipment manufacturers, which very much supports one conventional wisdom about nanotechology as a business, which is that the first people to make money from it will be the suppliers of the tools of the trade. Perhaps the second category are those countries and regions who are trying to promote themselves as desirable locations for businesses to relocate to. Companies that actually have nanotechnology products for actual consumer markets are very much in the minority, though there are certainly a few interesting ones there.
Alternative photovoltaics (dye-sensitised and/or polymer-based) are making a strong showing, helped by a lecture from Alan Heeger, largely about Konarka. This must be one of the major areas where incremental nanotechnology has the potential to make a disruptive change to the economy. A less predictable, but fascinating stand, for me, was from a Swiss plastics injection moulding company called Weidmann. Injection moulding is the familiar (and very cheap) way in which many plastic items, like the little plastic toys that come in cereal boxes, are made. Weidmann are demonstrating an injection moulded part in an ordinary commodity polymer with a controlled surface topography at the level of 5-10 nanometers. To me it is stunning that such a cheap and common processing technology can be adapted (certainly with some very clever engineering) to produce nanostructured parts in this way. Early applications will be to parts with optical effects like holograms directly printed in, and more immediately microfluidic reactors for diagnostics and testing.
The UK has a big presence here, and our stand has some very interesting exhibitors on it. I’ll single out Nanomagnetics which uses a naturally occurring protein to template the manufacture of magnetic nanoparticles with very precisely controlled sizes. These nanoparticles are then used either for high density data storage applications or for water purification, as removable forward osmosis agents. This is a great application of exploiting biological nanotechnology that very much is in accord with the philosophy outlined in my book Soft Machines; I should declare an interest in that I’ve just joined the scientific advisory board of this company.
The UK government is certainly working hard to promote the interests of its nascent nanotechnology industry. Our stall is full of well-dressed and suave diplomats and civil servants. However, one of the small business exhibitors was muttering a little that if only they were willing to spend the money directly supporting the companies with no-strings contracts, as the US government is doing with companies like Nanosys, then maybe the UK’s prospects would be even brighter.