The UK Government’s Food Standards Agency has issued a draft report about the use of nanotechnology in food and the regulatory implications this might have. The report can be downloaded here; the draft report is now open for public consultation and comments are invited by July 14th.
Observers could be forgiven some slight bemusement when it comes to the potential applications of nanotechnology to food, in that, entirely according to one’s definition of nanotechnology, these could encompass either almost everything or almost nothing. As the FSA says on its website: “In its widest sense, nanotechnology and nanomaterials are a natural part of food processing and conventional foods, as the characteristic properties of many foods rely upon nanometre sized components (e.g. nanoemulsions and foams).” To give just one example, the major protein component of milk – casein – is naturally present in the form of clusters of molecules tens of nanometers in size, so most of the processes of the dairy industry involve the manipulation of naturally occurring nanoparticles. On the other hand, in terms of the narrow focus that has developed at the applications end of nanotechnology on engineered nanoparticles, the current impact on food is rather small. In fact, the FSA states categorically in the report: “The Agency is not aware of any examples of manufactured nanoparticles or other nanomaterials being used in food currently sold in the UK.”
In terms of the narrow focus on engineered nanoparticles, it is clear that there is indeed a regulatory gap at the moment. The FSA states that, if a food ingredient were to be used in a new, nanoscale form, then currently there would be no need to pass any new regulatory hurdles. However, the FSA believes that a more general protection would step in as a backstop – ” in such cases, the general safety articles of the EU Food Law Regulation (178/2002) would apply, which require that food placed on the market is not unsafe.” So, how likely is it that this situation, and subsequent problems, might arise? One needs first to look at those permitted food additives that are essentially insoluble in oil or water. These include (in the EU) some inorganic materials that have been used in nanoparticulate form in non-food contexts, including titanium dioxide, silicon dioxide, some clay-based materials, and the metals aluminium, silver and gold. Insoluble organic materials include cellulose, in both powdered and microcrystalline forms. The latter is an interesting case because it provides a precedent for regulations that do specify size limits – the FSA report states that ” The only examples in the food additives area that specifically limits the presence of small particles is the specification for microcrystalline cellulose, where the presence of small particles (< 5 microns) is limited because of uncertainties over their safety. " The FSA seems fairly confident that if necessary similar amendments could quickly be made in the case of other materials. But there remains the problem that currently there isn’t, as far as I can see, a fail-safe method by which the FSA could be alerted to the use of such nanomaterials and any problems they might cause. On the other hand, it’s not obvious to me why one might want to use these sorts of materials in a nanoparticulate form in food. Titanium dioxide, for example, is used essentially as a white pigment, so there wouldn’t be any point using it in a transparent, nanoscale form.
It seems unlikely that “nanoparticles” will be a useful regulatory category. Surely a variety of industrial and biological processes already create objects with a size range from 1 to 100 or 1000 nm.
Hal, I entirely agree. The example of food makes this particularly clear.
Assuming only larger food corporations would bother with spending time and money to develop “nano-food-additives”…what would be their motivations? Larger profits? Food has already been tampered with too much. Its all nonsense. I just hope they will have to label it, cuz I aint touching that shit.
I am sorry that this comment is being posted so late, however the present “milk- adulteration- by- melamine” scandal is on and I wonder if nanotechnology could detect such adulteration?