The recent movie “Transcendence” will not be troubling the sci-fi canon of classics, if the reviews are anything to go by. But its central plot device – “uploading” a human consciousness to a computer – remains both a central aspiration of transhumanists, and a source of queasy fascination to the rest of us. The idea is that someone’s mind is simply a computer programme, that in the future could be run on a much more powerful computer than a brain, just as one might run an old arcade game on a modern PC in emulation mode. “Mind uploading” has a clear appeal for people who wish to escape the constraints of our flesh and blood existence, notably the constraint of our inevitable mortality.
In this post I want to consider two questions about mind uploading, from my perspective as a scientist. I’m going to use as an operational definition of “uploading a mind” the requirement that we can carry out a computer simulation of the activity of the brain in question that is indistinguishable in its outputs from the brain itself. For this, we would need to be able to determine the state of an individual’s brain to sufficient accuracy that it would be possible to run a simulation that accurately predicted the future behaviour of that individual and would convince an external observer that it faithfully captured the individual’s identity. I’m entirely aware that this operational definition already glosses over some deep conceptual questions, but it’s a good concrete starting point. My first question is whether it will be possible to upload the mind of anyone reading this now. My answer to this is no, with a high degree of probability, given what we know now about how the brain works, what we can do now technologically, and what technological advances are likely in our lifetimes. My second question is whether it will ever be possible to upload a mind, or whether there is some point of principle that will always make this impossible. I’m obviously much less certain about this, but I remain sceptical.
This will be a long post, going into some technical detail. To summarise my argument, I start by asking whether or when it will be possible to map out the “wiring diagram” of an individual’s brain – the map of all the connections between its 100 billion or so neurons. We’ll probably be able to achieve this mapping in the coming decades, but only for a dead and sectioned brain; the challenges for mapping out a living brain at sub-micron scales look very hard. Then we’ll ask some fundamental questions about what it means to simulate a brain. Simulating brains at the levels of neurons and synapses requires the input of phenomenological equations, whose parameters vary across the components of the brain and change with time, and are inaccessible to in-vivo experiment. Unlike artificial computers, there is no clean digital abstraction layer in the brain; given the biological history of nervous systems as evolved, rather than designed, systems, there’s no reason to expect one. The fundamental unit of biological information processing is the molecule, rather than any higher level structure like a neuron or a synapse; molecular level information processing evolved very early in the history of life. Living organisms sense their environment, they react to what they are sensing by changing the way they behave, and if they are able to, by changing the environment too. This kind of information processing, unsurprisingly, remains central to all organisms, humans included, and this means that a true simulation of the brain would need to be carried out at the molecular scale, rather than the cellular scale. The scale of the necessary simulation is out of reach of any currently foreseeable advance in computing power. Finally I will conclude with some much more speculative thoughts about the central role of randomness in biological information processing. I’ll ask where this randomness comes from, finding an ultimate origin in quantum mechanical fluctuations, and speculate about what in-principle implications that might have on the simulation of consciousness.
Why would people think mind uploading will be possible in our lifetimes, given the scientific implausibility of this suggestion? I ascribe this to a combination of over-literal interpretation of some prevalent metaphors about the brain, over-optimistic projections of the speed of technological advance, a lack of clear thinking about the difference between evolved and designed systems, and above all wishful thinking arising from people’s obvious aversion to death and oblivion.
On science and metaphors
I need to make a couple of preliminary comments to begin with. First, while I’m sure there’s a great deal more biology to learn about how the brain works, I don’t see yet that there’s any cause to suppose we need fundamentally new physics to understand it. Continue reading “Your mind will not be uploaded”